Cyclic di-AMP (c-di-AMP) has been shown to play important roles as a second messenger in bacterial physiology and infections. However, understanding of how the signal is transduced is still limited. Previously, we have characterized a diadenylate cyclase and two c-di-AMP phosphodiesterases in Streptococcus pneumoniae, a Gram-positive pathogen. In this study, we identified a c-di-AMP binding protein (CabP) in S. pneumoniae using c-di-AMP affinity chromatography. We demonstrated that CabP specifically bound c-di-AMP and that this interaction could not be interrupted by competition with other nucleotides, including ATP, cAMP, AMP, phosphoadenylyl adenosine (pApA), and cyclic di-GMP (c-di-GMP). By using a bacterial two-hybrid system and genetic mutagenesis, we showed that CabP directly interacted with a potassium transporter (SPD_0076) and that both proteins were required for pneumococcal growth in media with low concentrations of potassium. Interestingly, the interaction between CabP and SPD_0076 and the efficiency of potassium uptake were impaired by elevated c-di-AMP in pneumococci. These results establish a direct c-di-AMP-mediated signaling pathway that regulates pneumococcal potassium uptake.
BackgroundThe gram-negative bacterium Francisella tularensis survives in arthropods, fresh water amoeba, and mammals with both intracellular and extracellular phases and could reasonably be expected to express distinct phenotypes in these environments. The presence of a capsule on this bacterium has been controversial with some groups finding such a structure while other groups report that no capsule could be identified. Previously we reported in vitro culture conditions for this bacterium which, in contrast to typical methods, yielded a bacterial phenotype that mimics that of the bacterium's mammalian, extracellular phase.Methods/FindingsSDS-PAGE and carbohydrate analysis of differentially-cultivated F. tularensis LVS revealed that bacteria displaying the host-adapted phenotype produce both longer polymers of LPS O-antigen (OAg) and additional HMW carbohydrates/glycoproteins that are reduced/absent in non-host-adapted bacteria. Analysis of wildtype and OAg-mutant bacteria indicated that the induced changes in surface carbohydrates involved both OAg and non-OAg species. To assess the impact of these HMW carbohydrates on the access of outer membrane constituents to antibody we used differentially-cultivated bacteria in vitro to immunoprecipitate antibodies directed against outer membrane moieties. We observed that the surface-carbohydrates induced during host–adaptation shield many outer membrane antigens from binding by antibody. Similar assays with normal mouse serum indicate that the induced HMW carbohydrates also impede complement deposition. Using an in vitro macrophage infection assay, we find that the bacterial HMW carbohydrate impedes TLR2-dependent, pro-inflammatory cytokine production by macrophages. Lastly we show that upon host-adaptation, the human-virulent strain, F. tularensis SchuS4 also induces capsule production with the effect of reducing macrophage-activation and accelerating tularemia pathogenesis in mice.ConclusionF. tularensis undergoes host-adaptation which includes production of multiple capsular materials. These capsules impede recognition of bacterial outer membrane constituents by antibody, complement, and Toll-Like Receptor 2. These changes in the host-pathogen interface have profound implications for pathogenesis and vaccine development.
Cyclic di-AMP (c-di-AMP) is a newly discovered bacterial second messenger. However, regulation of c-di-AMP homeostasis is poorly understood. In , a sole diadenylate cyclase, CdaA, produces c-di-AMP and two phosphodiesterases, Pde1 and Pde2, cleave the signaling dinucleotide. To expand our knowledge of the pneumococcal c-di-AMP signaling network, we performed whole-genome sequencing of Δ Δ heat shock suppressors. In addition to their effects on surviving heat shock, these suppressor mutations restored general stress resistance and improved growth in rich medium. Mutations in CdaA or in the potassium transporter TrkH paired with an insertion leading to a frameshift at the C terminus of CdaA significantly reduced c-di-AMP levels. These observations indicate that the elevated c-di-AMP levels in the Δ Δ mutant enhance susceptibility of to the stress conditions. Interestingly, we have previously shown that TrkH complexes with a Trk family c-di-AMP-binding protein, CabP, to mediate potassium uptake. In this study, we found that deletion of significantly reduced pneumococcal c-di-AMP levels. This is the first observation that a c-di-AMP effector protein modulates bacterial c-di-AMP homeostasis. Second messengers, including c-di-AMP, are prevalent among bacterial species. In , c-di-AMP phosphodiesterase-encoding gene null mutants are attenuated during mouse models of infection, but the role of c-di-AMP signaling in pneumococcal pathogenesis is enigmatic. In this work, we found that heat shock suppressor mutations converge on undermining c-di-AMP toxicity by changing intracellular c-di-AMP concentrations. These mutations improve the growth and restore the stress response generally in c-di-AMP phosphodiesterase-deficient pneumococci, thereby demonstrating the essentiality for tight regulation of c-di-AMP homeostasis in order to respond to stress. Likewise, this work demonstrates that a c-di-AMP effector protein, CabP, affects c-di-AMP homeostasis, which provides new perception into c-di-AMP regulation. This study has implications for c-di-AMP-producing bacteria since many species contain CabP homologs.
The gram-negative bacterium Francisella tularensis (Ft) is both a potential biological weapon and a naturally occurring microbe that survives in arthropods, fresh water amoeba, and mammals with distinct phenotypes in various environments. Previously, we used a number of measurements to characterize Ft grown in Brain-Heart Infusion (BHI) broth as (1) more similar to infection-derived bacteria, and (2) slightly more virulent in naïve animals, compared to Ft grown in Mueller Hinton Broth (MHB). In these studies we observed that the free amino acids in MHB repress expression of select Ft virulence factors by an unknown mechanism. Here, we tested the hypotheses that Ft grown in BHI (BHI-Ft) accurately displays a full protein composition more similar to that reported for infection-derived Ft and that this similarity would make BHI-Ft more susceptible to pre-existing, vaccine-induced immunity than MHB-Ft. We performed comprehensive proteomic analysis of Ft grown in MHB, BHI, and BHI supplemented with casamino acids (BCA) and compared our findings to published “omics” data derived from Ft grown in vivo. Based on the abundance of ~1,000 proteins, the fingerprint of BHI-Ft is one of nutrient-deprived bacteria that—through induction of a stringent-starvation-like response—have induced the FevR regulon for expression of the bacterium's virulence factors, immuno-dominant antigens, and surface-carbohydrate synthases. To test the notion that increased abundance of dominant antigens expressed by BHI-Ft would render these bacteria more susceptible to pre-existing, vaccine-induced immunity, we employed a battery of LVS-vaccination and S4-challenge protocols using MHB- and BHI-grown Ft S4. Contrary to our hypothesis, these experiments reveal that LVS-immunization provides a barrier to infection that is significantly more effective against an MHB-S4 challenge than a BHI-S4 challenge. The differences in apparent virulence to immunized mice are profoundly greater than those observed with primary infection of naïve mice. Our findings suggest that tularemia vaccination studies should be critically evaluated in regard to the growth conditions of the challenge agent.
Streptococcus pneumoniae (the pneumococcus) is a naturally competent organism that causes diseases such as pneumonia, otitis media, and bacteremia. The essential bacterial second messenger cyclic di-AMP (c-di-AMP) is an emerging player in the stress responses of many pathogens. In S. pneumoniae, c-di-AMP is produced by a diadenylate cyclase, CdaA, and cleaved by phosphodiesterases Pde1 and Pde2. c-di-AMP binds a transporter of K+ (Trk) family protein, CabP, which subsequently halts K+ uptake via the transporter TrkH. Recently, it was reported that Pde1 and Pde2 are essential for pneumococcal virulence in mouse models of disease. To elucidate c-di-AMP-mediated transcription that may lead to changes in pathogenesis, we compared the transcriptomes of wild-type (WT) and Δpde1 Δpde2 strains by transcriptome sequencing (RNA-Seq) analysis. Notably, we found that many competence-associated genes are significantly upregulated in the Δpde1 Δpde2 strain compared to the WT. These genes play a role in DNA uptake, recombination, and autolysis. Competence is induced by a quorum-sensing mechanism initiated by the secreted factor competence-stimulating peptide (CSP). Surprisingly, the Δpde1 Δpde2 strain exhibited reduced transformation efficiency compared to WT bacteria, which was c-di-AMP dependent. Transformation efficiency was also directly related to the [K+] in the medium, suggesting a link between c-di-AMP function and the pneumococcal competence state. We found that a strain that possesses a V76G variation in CdaA produced less c-di-AMP and was highly susceptible to CSP. Deletion of cabP and trkH restored the growth of these bacteria in medium with CSP. Overall, our study demonstrates a novel role for c-di-AMP in the competence program of S. pneumoniae. IMPORTANCE Genetic competence in bacteria leads to horizontal gene transfer, which can ultimately affect antibiotic resistance, adaptation to stress conditions, and virulence. While the mechanisms of pneumococcal competence signaling cascades have been well characterized, the molecular mechanism behind competence regulation is not fully understood. The bacterial second messenger c-di-AMP has previously been shown to play a role in bacterial physiology and pathogenesis. In this study, we provide compelling evidence for the interplay between c-di-AMP and the pneumococcal competence state. These findings not only attribute a new biological function to this dinucleotide as a regulator of competence, transformation, and survival under stress conditions in pneumococci but also provide new insights into how pneumococcal competence is modulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.