High-density arrays of oligonucleotide probes are proving to be powerful new tools for large-scale DNA and RNA sequence analysis. A method for constructing these arrays, using light-directed DNA synthesis with photoactivatable monomers, can currently achieve densities on the order of 10 6 sequences͞cm 2 . One of the challenges facing this technology is to further increase the volume, complexity, and density of sequence information encoded in these arrays. Here we demonstrate a new approach for synthesizing DNA probe arrays that combines standard solid-phase oligonucleotide synthesis with polymeric photoresist films serving as the photoimageable component. This opens the way to exploiting high-resolution imaging materials and processes from the microelectronics industry for the fabrication of DNA probe arrays with substantially higher densities than are currently available.
Bioelectronic devices sense or deliver information at the interface between living systems and electronics by converting biological signals into electronic signals and vice-versa. Biological signals are typically carried by ions and small molecules. As such, ion conducting materials are ideal candidates in bioelectronics for an optimal interface. Among these materials, ion conducting polymers that are able to uptake water are particularly interesting because, in addition to ionic conductivity, their mechanical properties can closely match the ones of living tissue. In this review, we focus on a specific subset of ion-conducting polymers: proton (H + ) conductors that are naturally derived. We first provide a brief introduction of the proton conduction mechanism, and then outline the chemical structure and properties of representative proton-conducting natural biopolymers: polysaccharides (chitosan and glycosaminoglycans), peptides and proteins, and melanin. We then highlight examples of using these biopolymers in bioelectronic devices. We conclude with current challenges and future prospects for broader use of natural biopolymers as proton conductors in bioelectronics and potential translational applications.
Bioelectronic devices that interface electronics with biological systems can actuate and control biological processes. The potassium ion plays a vital role in cell membrane physiology, maintaining the cell membrane potential (Vmem) and generating action potentials. In this work, we present two bioelectronic ion pumps that use an electronic signal to modulate the potassium ion concentration in solution. The first ion pump is designed to integrate directly with six-well cell culture plates for optimal ease of integration with in vitro cell culture, and the second on-chip ion pump provides high spatial resolution. These pumps offer increased ease of integration with in vitro systems and demonstrate K+ concentration distribution with high spatial resolution. We systematically investigate the ion pump’s performance using electrical characterization and computational modeling, and we explore closed-loop control of K+ concentration using fluorescent dyes as indicators. As a proof-of-concept, we study the effects of modulating K+ concentration on Vmem of THP-1 macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.