Purpose: The purpose of this study was to determine whether specific language impairment (SLI) and dyslexia are distinct developmental disorders. Method: Study 1 investigated the overlap between SLI identified in kindergarten and dyslexia identified in 2nd, 4th, or 8th grades in a representative sample of 527 children. Study 2 examined phonological processing in a subsample of participants, including 21 children with dyslexia only, 43 children with SLI only, 18 children with SLI and dyslexia, and 165 children with typical language/reading development. Measures of phonological awareness and nonword repetition were considered. Results: Study 1 showed limited but statistically significant overlap between SLI and dyslexia. Study 2 found that children with dyslexia or a combination of dyslexia and SLI performed significantly less well on measures of phonological processing than did children with SLI only and those with typical development. Children with SLI only showed only mild deficits in phonological processing compared with typical children. Conclusions: These results support the view that SLI and dyslexia are distinct but potentially comorbid developmental language disorders. A deficit in phonological processing is closely associated with dyslexia but not with SLI when it occurs in the absence of dyslexia.
Purpose The purpose of this study was to differentiate effects of phonotactic probability, the likelihood of occurrence of a sound sequence, and neighborhood density, the number of words that sound similar to a given word, on adult word learning. A second purpose was to determine what aspect of word learning (viz., triggering learning, formation of an initial representation, or integration with existing representations) was influenced by each variable. Method Thirty-two adults were exposed to 16 nonwords paired with novel objects in a story context. The nonwords orthogonally varied in phonotactic probability and neighborhood density. Learning was measured following 1, 4, and 7 exposures in a picture-naming task. Partially correct (i.e., 2 of 3 phonemes correct) and completely correct responses (i.e., 3 of 3 phonemes correct) were analyzed together and independently to examine emerging and partial representations of new words versus complete and accurate representations of new words. Results Analysis of partially correct and completely correct responses combined showed that adults learned a lower proportion of high-probability nonwords than low-probability nonwords (i.e., high-probability disadvantage) and learned a higher proportion of high-density nonwords than low-density nonwords (i.e., high-density advantage). Separate analysis of partially correct responses yielded an effect of phonotactic probability only, whereas analysis of completely correct responses yielded an effect of neighborhood density only. Conclusions These findings suggest that phonological and lexical processing influence different aspects of word learning. In particular, phonotactic probability may aid in triggering new learning, whereas neighborhood density may influence the integration of new lexical representations with existing representations.
The present study investigated the use of the Reading Component Model to subgroup poor readers. A large sample of poor readers was identified in second grade and subgrouped on the basis of relative strengths and weaknesses in word recognition and listening comprehension. Although homogeneous subgroups were not identified, poor readers could be classified into four subgroups that differed significantly in reading-related abilities. Further analyses showed that poor readers' strengths and weaknesses in listening comprehension, and to a lesser extent in word recognition, were foreshadowed by their abilities on related kindergarten measures. Follow-up testing in the fourth grade indicated that poor readers' individual differences in word recognition and listening comprehension were consistent and that subgroups were moderately stable. The implications of these results for the assessment and remediation of reading disabilities are discussed.
This study investigated the structure of working memory in young school-age children by testing the fit of three competing theoretical models using a wide variety of tasks. The best fitting models were then used to assess the relationship between working memory and nonverbal measures of fluid reasoning (Gf) and visual processing (Gv) intelligence. One hundred sixty-eight English-speaking 7–9 year olds with typical development, from three states, participated. Results showed that Cowan’s three-factor embedded processes model fit the data slightly better than Baddeley and Hitch’s (1974) three-factor model (specified according to Baddeley, 1986) and decisively better than Baddeley’s (2000) four-factor model that included an episodic buffer. The focus of attention factor in Cowan’s model was a significant predictor of Gf and Gv. The results suggest that the focus of attention, rather than storage, drives the relationship between working memory, Gf, and Gv in young school-age children. Our results do not rule out the Baddeley and Hitch model, but they place constraints on both it and Cowan’s model. A common attentional component is needed for feature binding, running digit span, and visual short-term memory tasks; phonological storage is separate, as is a component of central executive processing involved in task manipulation. The results contribute to a zeitgeist in which working memory models are coming together on common ground (cf. Cowan, Saults, & Blume, 2014; Hu, Allen, Baddeley, & Hitch, 2016).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.