Background:Avibactam is a -lactamase inhibitor with a broad spectrum of activity. Results: Kinetic parameters of inhibition as well as acyl enzyme stability are reported against six clinically relevant enzymes. Conclusion: Inhibition efficiency is highest against class A, then class C, and then class D. Significance: These base-line inhibition values across enzyme classes provide the foundation for future structural and mechanistic enzymology experiments.
Multidrug-resistant (MDR) bacterial infections are a serious threat to public health. Among the most alarming resistance trends is the rapid rise in the number and diversity of β-lactamases, enzymes that inactivate β-lactams, a class of antibiotics that has been a therapeutic mainstay for decades. Although several new β-lactamase inhibitors have been approved or are in clinical trials, their spectra of activity do not address MDR pathogens such as Acinetobacter baumannii. This report describes the rational design and characterization of expanded-spectrum serine β-lactamase inhibitors that potently inhibit clinically relevant class A, C and D β-lactamases and penicillin-binding proteins, resulting in intrinsic antibacterial activity against Enterobacteriaceae and restoration of β-lactam activity in a broad range of MDR Gram-negative pathogens. One of the most promising combinations is sulbactam-ETX2514, whose potent antibacterial activity, in vivo efficacy against MDR A. baumannii infections and promising preclinical safety demonstrate its potential to address this significant unmet medical need.
Background: Inhibition of Neisseria gonorrhoeae type II topoisomerases gyrase and TopoIV by the antibacterial spiropyrimidinetrione AZD0914 was investigated. Results: AZD0914 stabilized the gyrase-DNA complex with double strand DNA cleavage, retaining potency in a fluoroquinolone-resistant mutant, with little inhibition of human type II topoisomerases. Conclusion: AZD0914 displays mechanistic differences from fluoroquinolones. Significance: AZD0914 has the potential to combat drug-resistant gonorrhea.
The development of high-level resistance to ceftazidime/avibactam appears to occur at low frequency, but structural modifications in AmpC can occur that impact the ability of avibactam to inhibit the enzyme and thereby protect ceftazidime from hydrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.