Cancer immunotherapy is rapidly advancing in the treatment of a variety of hematopoietic cancers, including pediatric acute lymphoblastic leukemia and diffuse large B cell lymphoma, with chimeric antigen receptor (CAR)-T cells. CARs are genetically encoded artificial T cell receptors that combine the antigen specificity of an antibody with the machinery of T cell activation. However, implementation of CAR technology in the treatment of solid tumors has been progressing much slower. Solid tumors are characterized by a number of challenges that need to be overcome, including cellular heterogeneity, immunosuppressive tumor microenvironment (TME), and, in particular, few known cancer-specific targets. Post-translational modifications that differentially occur in malignant cells generate valid cell surface, cancer-specific targets for CAR-T cells. We previously demonstrated that CAR-T cells targeting an aberrant O-glycosylation of MUC1, a common cancer marker associated with changes in cell adhesion, tumor growth and poor prognosis, could control malignant growth in mouse models. Here, we discuss the field of glycan-directed CAR-T cells and review the different classes of antibodies specific for glycan-targeting, including the generation of high affinity O-glycopeptide antibodies. Finally, we discuss historic and recently investigated glycan targets for CAR-T cells and provide our perspective on how targeting the tumor glycoproteome and/or glycome will improve CAR-T immunotherapy.
The embryonic heart tube is formed by the migration and subsequent midline convergence of two bilateral heart fields. In Drosophila the heart fields are organized into two rows of cardioblasts (CBs). While morphogenesis of the dorsal ectoderm, which lies directly above the Drosophila dorsal vessel (DV), has been extensively characterized, the migration and concomitant fundamental factors facilitating DV formation remain poorly understood. Here we provide evidence that DV closure occurs at multiple independent points along the A-P axis of the embryo in a “buttoning” pattern, divergent from the zippering mechanism observed in the overlying epidermis during dorsal closure. Moreover, we demonstrate that a genetically distinct subset of CBs is programmed to make initial contact with the opposing row. To elucidate the cellular mechanisms underlying this process, we examined the role of Rho GTPases during cardiac migration using inhibitory and overexpression approaches. We found that Cdc42 shows striking cell-type specificity during DV formation. Disruption of Cdc42 function specifically prevents CBs that express the homeobox gene tinman from completing their dorsal migration, resulting in a failure to make connections with their partnering CBs. Conversely, neighboring CBs that express the orphan nuclear receptor, seven-up, are not sensitive to Cdc42 inhibition. Furthermore, this phenotype was specific to Cdc42 and was not observed upon perturbation of Rac or Rho function. Together with the observation that DV closure occurs through the initial contralateral pairing of tinman-expressing CBs, our studies suggest that the distinct buttoning mechanism we propose for DV closure is elaborated through signaling pathways regulating Cdc42 activity in this cell type.
Glass microscope slides are considered by many as the substrate of choice for microarray manufacturing due to their amenability to various surface chemistry modifications. The use of silanes to attach various functional groups onto glass slides has provided a versatile tool for the covalent immobilization of many diverse biomolecules of interest. We recently noted a dramatic reduction in biomolecule immobilization efficiency on standard microscope slides prepared using a well-characterized silanization method. A survey of commercial soda-lime slides yielded the surprising result that slides purchased prior to 2008 had superior immobilization efficiencies when compared to those purchased after 2008. Characterization of the slides by X-ray photoelectron spectroscopy (XPS), contact angle measurements, and atomic force microscopy (AFM), revealed a significant correlation (R > 0.9) between magnesium content, surface roughness, and bioimmobilization efficiency. High performance slides had higher magnesium content and higher root-mean-square (rms) roughness (P < 0.005) than slides with lower bioimmobilization efficiencies. Although the exact mechanism of how magnesium content and surface roughness affect silane deposition has not yet been defined, we show that recent changes in the chemical and physical properties of commercial soda-lime slides affect the ability of these slides to be covalently modified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.