Nitrogen is essential for algal productivity but often reaches limiting concentrations in temperate ecosystems. Increased water motion enhances nitrogen uptake by decreasing the thickness of the diffusion boundary layer surrounding algal surface tissue, allowing for increased nitrogen mass-transfer across this boundary. Macrocystis pyrifera forms large beds that span the water column and can alter the surrounding physical environment by creating bed-wide boundaries that may reduce current and wave propagation to the bed interior; reduced water motion may decrease mass-transfer rates and therefore alter nitrogen uptake. We investigated whether a water mass-transfer gradient across M. pyrifera beds exists by identifying 3 bed types likely to experience different water motion intensities (open, shoreline exterior and shoreline interior) and whether this gradient influenced heterogeneity in M. pyrifera growth and tissue status during low nitrogen (summer) and high nitrogen (winter) conditions. Gypsum dissolution suggested that mass-transfer significantly increased across beds; open bed dissolution rates were approximately 6% higher than the shoreline exterior, which exhibited mean dissolution rates 17% higher than the shoreline interior. Summer kelp growth, pigmentation, tissue %N and C:N paralleled masstransfer, where exterior kelp exhibited higher values than interior kelp. The same trends did not exist during the winter, when ambient nitrogen concentrations were high, suggesting that masstransfer is an important mechanism for nitrogen acquisition during limitation events. This study highlights mass-transfer variability across relatively small macroalgal beds and the corresponding effects on kelp growth and nitrogen status, which previously might have been assumed as uniform due to the general wave exposure.
There is increasing urgency to implement climate change mitigation strategies that enhance greenhouse gas removal from the atmosphere and reduce carbon dioxide (CO2) emissions. Recently, coastal “blue carbon” habitats—mangroves, salt marshes, and seagrass meadows—have received attention for their ability to capture CO2 and store organic carbon (OC), primarily in their sediments. Across habitat types and regions, however, information about the sequestration rates and sources of carbon to local sediments remains sparse. Here we compiled recently obtained estimates of sediment OC stocks and sequestration rates from 139 cores collected from temperate seagrass (Zostera marina) meadows in Alaska, British Columbia, Washington, and Oregon. Across all cores sediment OC content averaged 0.75%. Organic carbon stocks in the top 25 cm and 1 m of the sediment averaged 1,846 and 7,168 g OC m−2, respectively. Carbon sequestration rates ranged from 4.6 to 93.0 g OC m−2 yr−1 and averaged 24.8 g OC m−2 yr−1. Isotopic data from this region suggest that OC in the sediments is largely from noneelgrass sources. In general, these values are comparable to those from other temperate Z. marina meadows, but significantly lower than previously reported values for seagrasses globally. These results further highlight the need for local and species‐level quantification of blue carbon parameters. While temperate eelgrass meadows may not sequester and store as much carbon as seagrass meadows elsewhere, climate policy incentives should still be implemented to protect existing sediment carbon stocks and the other critical ecosystem services associated with eelgrass habitats.
Our understanding of the response of vascular, terrestrial plants to nitrogen (N) addition is advanced and provides the foundation for modern agriculture. In comparison, information on responses of marine macroalgae to increased nitrogen is far less developed. We investigated how in situ pulses of nitrate (NO3 (-)) affected the growth and N physiology of Macrocystis pyrifera by adding N using potassium nitrate dissolution blocks during a period of low seawater N concentration. Multiple parameters (e.g. growth, pigments, soluble NO3 (-)) were measured in distinct tissues throughout entire fronds (apical meristem, stipe, adult blade, mature blade, sporophyll, and holdfast). Unexpectedly, N fertilisation did not enhance elongation rates within the frond, but instead thickness (biomass per unit area) increased in adult blades. Increased blade thickness may have enhanced tissue integrity as fertilised kelp had lower rates of blade erosion. Tissue chemistry also responded to enrichment; pigmentation, soluble NO3 (-), and % N were higher throughout fertilised fronds. Labelled (15)N traced N uptake and translocation from N sources in the kelp canopy to sinks in the holdfast, 10 m below. This is the first evidence of long-distance (>1 m) transport of N in macroalgae. Patterns in physiological parameters suggest that M. pyrifera displays functional differentiation between canopy and basal tissues that may aid in nutrient-tolerance strategies, similar to those seen in higher plants and unlike those seen in more simple algae (i.e. non-kelps). This study highlights how little we know about N additions and N-use strategies within kelp compared to the wealth of literature available for higher plants.
The presence and strength of trophic cascades can be a function of the local abiotic environment and relative abundance of key species. The reintroduction and expansion of sea otters Enhydra lutris, a known keystone species in kelp ecosystems, in southeast Alaska provides a rare natural experiment to test the generality of a apex-predatorseagrass trophic cascades across a broad spatial scale. We conducted an in-depth seagrass community survey at 21 sites spanning ~100 km with variable sea otter presence to test for patterns of alternating abundance and direct relationships between species indicative of trophic cascades. Our analysis revealed some of the trophic relationships predicted by the apex predator-seagrass trophic cascades theory, including a strong negative relationship between sea otters and crabs and many of the expected relationships between nitrate, seagrass, epiphytes and epifauna. Other expected relationships within a trophic cascade, however, were not supported -including no relationship between crabs and epifauna, a critical link in the trophic cascade. Given the lack of evidence for all hypothesized direct relationships, we conclude that a sea otter mediated trophic cascade may not be present in southeast Alaska and could be due to local scale factors including the spatial heterogeneity, low resource availability and non-linear food chains in southeast Alaska seagrass communities. However, correlation analyses suggest further interactions among biological and environmental variables in southeast Alaska seagrass communities, including a positive correlation between sea otters and seagrass biomass. These results suggest that the effects of recovering apex-predator populations may not be generalizable across regions and spatial scales, highlighting a need for local assessment on the ecology and management of these populations.
Seagrass meadows provide valuable ecosystem benefits but are at risk from disease. Eelgrass (Zostera marina) is a temperate species threatened by seagrass wasting disease (SWD), caused by the protist Labyrinthula zosterae. The pathogen is sensitive to warming ocean temperatures, prompting a need for greater understanding of the impacts on host health under climate change. Previous work demonstrates pathogen cultures grow faster under warmer laboratory conditions and documents positive correlations between warmer ocean temperatures and disease levels in nature. However, the consequences of disease outbreaks on eelgrass growth remain poorly understood. Here, we examined the effect of disease on eelgrass productivity in the field. We coupled in situ shoot marking with high-resolution imagery of eelgrass blades and used an artificial intelligence application to determine disease prevalence and severity from digital images. Comparisons of eelgrass growth and disease metrics showed that SWD impaired eelgrass growth and accumulation of non-structural carbon in the field. Blades with more severe disease had reduced growth rates, indicating that disease severity can limit plant growth. Disease severity and rhizome sugar content were also inversely related, suggesting that disease reduced belowground carbon accumulation. Finally, repeated measurements of diseased blades indicated that lesions can grow faster than healthy tissue in situ. This is the first study to demonstrate the negative impact of wasting disease on eelgrass health in a natural meadow. These results emphasize the importance of considering disease alongside other stressors to better predict the health and functioning of seagrass meadows in the Anthropocene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.