A near-field scanning microwave microprobe (NSMM) technique has been used to investigate the photovoltaic effect in solar cells. As the photoconductivity of the n-type silicon layer in the solar cells was varied due to the incident light intensities and the wavelength, we could directly observe the photoconductivity changes inside the solar cells by measuring the change of reflection coefficient S11 of the NSMM at an operating frequency near 4.1 GHz. We also directly imaged the photoconductivity changes by NSMM. Photoconductivity in solar cells is determined from the visualized microwave reflection coefficient changes at the interfaces with high sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.