Efficient use of a wireless network requires that transmissions be grouped into feasible sets, where feasibility means that each transmission can be successfully decoded in spite of the interference caused by simultaneous transmissions. Feasibility is most closely modeled by a signal-tointerference-plus-noise (SINR) formula, which unfortunately is conceptually complicated, being an asymmetric, cumulative, many-to-one relationship.We re-examine how well graphs can capture wireless receptions as encoded in SINR relationships, placing them in a framework in order to understand the limits of such modelling. We seek for each wireless instance a pair of graphs that provide upper and lower bounds on the feasibility relation, while aiming to minimize the gap between the two graphs. The cost of a graph formulation is the worst gap over all instances, and the price of (graph) abstraction is the smallest cost of a graph formulation.We propose a family of conflict graphs that is parameterized by a non-decreasing sub-linear function, and show that with a judicious choice of functions, the graphs can capture feasibility with a cost of O(log * ∆), where ∆ is the ratio between the longest and the shortest link length. This holds on the plane and more generally in doubling metrics. We use this to give greatly improved O(log * ∆)-approximation for fundamental link scheduling problems with arbitrary power control.We explore the limits of graph representations and find that our upper bound is tight: the price of graph abstraction is Ω(log * ∆). We also give strong impossibility results for general metrics, and for approximations in terms of the number of links.
Abstract. In this paper the problem of scheduling with power control in wireless networks is studied: given a set of communication requests, one needs to assign the powers of the network nodes, and schedule the transmissions so that they can be done in a minimum time, taking into account the signal interference of concurrently transmitting nodes. The signal interference is modeled by SINR constraints. Approximation algorithms are given for this problem, which use the mean power assignment. The problem of schduling with fixed mean power assignment is also considered, and approximation guarantees are proven.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.