Type 1 diabetes (insulin-dependent diabetes mellitus, IDDM) is a disease controlled by the major histocompatibility complex (MHC) which results from T-cell-mediated destruction of pancreatic beta-cells. The incomplete concordance in identical twins and the presence of autoreactive T cells and autoantibodies in individuals who do not develop diabetes suggest that other abnormalities must occur in the immune system for disease to result. We therefore investigated a series of at-risk non-progressors and type 1 diabetic patients (including five identical twin/triplet sets discordant for disease). The diabetic siblings had lower frequencies of CD4-CD8- Valpha24JalphaQ+ T cells compared with their non-diabetic sibling. All 56 Valpha24JalphaQ+ clones isolated from the diabetic twins/triplets secreted only interferon (IFN)-gamma upon stimulation; in contrast, 76 of 79 clones from the at-risk non-progressors and normals secreted both interleukin (IL)-4 and IFN-gamma. Half of the at-risk non-progressors had high serum levels of IL-4 and IFN-gamma. These results support a model for IDDM in which Thl-cell-mediated tissue damage is initially regulated by Valpha24JalphaQ+ T cells producing both cytokines; the loss of their capacity to secrete IL-4 is correlated with IDDM.
Background The immunopathogenesis of type 1 diabetes mellitus (T1DM) is associated with T-lymphocyte autoimmunity. To be fully active, immune T-lymphocytes require a co-stimulatory signal in addition to the main antigen driven signal. Abatacept modulates co-stimulation andprevents full T-lymphocyte activation. We evaluated the effect of abatacept in recent-onset T1DM. Methods In this multicentre, double-masked, randomised controlled trial, 112 subjects (ages 6–36) recently diagnosed with T1DM; 77 received abatacept (10 mg/kg, maximum 1000 mg/dose) and 35 received placebo infusions intravenously on days 1, 14, 28, and monthly for a total of 27 infusions over two years. Primary outcome was baseline-adjusted geometric mean 2-hour area under the curve (AUC) serum C-peptide following a mixed meal tolerance test at two years. Secondary outcomes include difference between groups in incidence of loss of peak C-peptide to < 0·2 pmol/ml, slope of C-peptide over time, changes in HbA1c and insulin dose, and safety. This trial is registered in ClinicalTrials.gov (NCT00505375). Findings Adjusted C-peptide AUC was 59% (95% CI: 6·1%, 112%) higher at two years with abatacept (0·378 pmol/ml) versus placebo (0·238 pmol/ml) (p=0·0029). The difference between groups was present throughout the trial, with an estimated 9·6 months’ delay in decline with abatacept. There was lower HbA1c (p<0·002) but similar insulin use. There were few, clinically not significant infusion related adverse events and minimal overall adverse events. There was no increase in infections or neutropenia. Interpretation Co-stimulation modulation with abatacept slowed decline of beta cell function over two years. The beneficial effect suggests that T-lymphocyte activation still occurs around the time of clinical diagnosis of T1DM. Yet, despite continued administration of abatacept over 24 months, the decline in beta cell function with abatacept was parallel to that with placebo after six months of treatment, causing us to speculate that T-lymphocyte activation may lessen with time. Further observation will determine whether the beneficial effect continues after cessation of abatacept infusions. Funding National Institutes of Health.
The helix-loop-helix (HLH) protein NEUROD1 (also known as BETA2) functions as a regulatory switch for endocrine pancreatic development. In mice homozygous for a targeted disruption of Neurod, pancreatic islet morphogenesis is abnormal and overt diabetes develops due in part to inadequate expression of the insulin gene 1 (Ins2). NEUROD1, following its heterodimerization with the ubiquitous HLH protein E47, regulates insulin gene (INS) expression by binding to a critical E-box motif on the INS promoter 2 . Here we describe two mutations in NEUROD1, which are associated with the development of type 2 diabetes in the heterozygous state. The first, a missense mutation at Arg 111 in the DNA-binding domain, abolishes E-box binding activity of NEUROD1. The second mutation gives rise to a truncated polypeptide lacking the carboxy-terminal trans-activation domain, a region that associates with the co-activators CBP and p300 (refs 3,4). The clinical profile of patients with the truncated NEUROD1 polypeptide is more severe than that of patients with the Arg 111 mutation. Our findings suggest that deficient binding of NEUROD1 or binding of a transcriptionally inactive NEUROD1 polypeptide to target promoters in pancreatic islets leads to the development of type 2 diabetes in humans.NEUROD1 contains two exons and has been mapped to chromosome 2q (refs 5,6). We did not examine exon 1 because it is not translated 7 . Exon 2 encodes a protein with several distinct domains (Fig. 1a). We screened exon 2 and the flanking intron sequences for DNA sequence differences by direct sequencing of DNA samples from 94 individuals with type 2 diabetes. Each was the index case through which we ascertained 94 large families for the presence of diabetes segregating as an autosomal dominant disorder 8,9 .We examined exon 2 in all index cases and found four variants of the published sequence. The first was a single base-pair substitution, G→A, in codon 45 that results in an Ala→Thr substitution in the amino terminus of NEUROD1. The frequency of the threonine variant was similar in 94 index cases and in 96 unrelated non-diabetic individuals (32.9% and 35.9%, respectively). Similarly, this polymorphism was not associated with Fig. 1 Sequence differences found in NEUROD1. a, Schematic organization of NEUROD1 and its domains. Numbers refer to the amino acids bordering the domains. The details of the HLH domain are shown at the top. Filled arrows indicate mutations and the dotted arrows indicate the amino acid variants identified in NEUROD1.The borders were determined based on mammalian homology using published data 2 . 'tx/p300' indicates the transactivation domain as well as the p300-interacting region of NEUROD1 (refs 3,4). b, Alignment of the first 30 aa of the bHLH domain of NEUROD1 with other members of the basic HLH (bHLH) family. Residues responsible for DNA contact are underlined. The Arg 111 residue of NEUROD1 and the corresponding residues of MYOD and E47 are shown [16][17][18] (italics). c, A fragment of NEUROD1 sequence is shown, with the 2...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.