IntroductionA comprehensive investigation of the genomic landscape of papillary thyroid carcinomas (PTC), the most common thyroid malignancy, was recently reported by The Cancer Genome Atlas Network (TCGA Network) (1). These well-differentiated tumors were found to have a low frequency of somatic alterations (2), with the majority harboring mutually exclusive activating mutations in BRAF (60%) and RAS-family genes (13%), as well as fusion oncoproteins, primarily involving receptor tyrosine kinases (RTKs) such as RET, NTRK1 or -3, and ALK. Distinct signaling and transcriptomic consequences were observed between BRAF V600E -like tumors, which showed higher MAPK transcriptional output and lower expression of genes involved in iodine metabolism, and RAS-like tumors, which had lower MAPK signaling and comparatively preserved expression of iodine-related genes.The TCGA study excluded poorly differentiated thryoid cancers (PDTCs) and anaplastic thyroid cancers (ATCs) from their analysis in order to focus on a homogeneous histological cohort that would provide sufficient power to identify low-frequency genomic events. Although PDTCs and ATCs account for approximately 5%-10% of thyroid cancers, they represent a major clinical challenge. Patients with PDTC and ATC have a mean survival after diagnosis of 3.2 and 0.5 years, respectively, and account for approximately a third of deaths caused by this disease (3). Virtually all cases are refractory to radioiodine therapy, and traditional chemotherapy and radiotherapy are of marginal benefit (4, 5).Molecularly targeted approaches are being tested in preclinical BACKGROUND. Poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) are rare and frequently lethal tumors that so far have not been subjected to comprehensive genetic characterization. METHODS.We performed next-generation sequencing of 341 cancer genes from 117 patient-derived PDTCs and ATCs and analyzed the transcriptome of a representative subset of 37 tumors. Results were analyzed in the context of The Cancer Genome Atlas study (TCGA study) of papillary thyroid cancers (PTC). RESULTS.Compared to PDTCs, ATCs had a greater mutation burden, including a higher frequency of mutations in TP53, TERT promoter, PI3K/AKT/mTOR pathway effectors, SWI/SNF subunits, and histone methyltransferases. BRAF and RAS were the predominant drivers and dictated distinct tropism for nodal versus distant metastases in PDTC. RAS and BRAF sharply distinguished between PDTCs defined by the Turin (PDTC-Turin) versus MSKCC (PDTC-MSK) criteria, respectively. Mutations of EIF1AX, a component of the translational preinitiation complex, were markedly enriched in PDTCs and ATCs and had a striking pattern of co-occurrence with RAS mutations. While TERT promoter mutations were rare and subclonal in PTCs, they were clonal and highly prevalent in advanced cancers. Application of the TCGA-derived BRAF-RAS score (a measure of MAPK transcriptional output) revealed a preserved relationship with BRAF/RAS mutation in PDTCs, whereas ATCs w...
TERT promoter mutations are highly prevalent in advanced thyroid cancers, particularly those harboring BRAF or RAS mutations, whereas PTCs with BRAF or RAS mutations are most often TERT promoter wild type. Acquisition of a TERT promoter mutation could extend survival of BRAF- or RAS-driven clones and enable accumulation of additional genetic defects leading to disease progression.
Background: Poorly differentiated thyroid cancer (PDTC) is a rare but clinically highly significant entity because it accounts for most fatalities from non-anaplastic follicular cell-derived thyroid cancer. Due to the relative rarity of the disease and heterogeneous diagnostic criteria, studies on PDTC have been limited. In light of the evolution of ultra-deep next-generation sequencing technologies and through correlation of clinicopathologic and genomic characteristics of PDTC, an improved understanding of the biology of PDTC has been facilitated. Here, the diagnostic criteria, clinicopathologic characteristics, management, and outcomes in PDTC, as well as genomic drivers in PDTC reported in recent next-generation sequencing studies, are reviewed. In addition, future prospects in improving the outcomes in PDTC patients are reviewed. Summary: PDTC patients tend to present with adverse clinicopathologic characteristics: older age, male predominance, advanced locoregional disease, and distant metastases. Surgery with clearance of all gross disease can achieve satisfactory locoregional control. However, the majority of PDTC patients die of distant disease. Five-year disease-specific survival for PDTC patients has been reported at 66%. On multivariate analysis, reported predictors of poor survival in PDTC patients have been older age (>45 years), T4a pathological stage, extrathyroidal extension, high mitotic rate, tumor necrosis, and distant metastasis at presentation. BRAF V600E or RAS mutations (27% and 24% of cases, respectively) remain mutually exclusive main drivers in PDTC. TERT promoter mutations represent the most common alteration in PDTC (40%). Mutation in translation initiation factor EIF1AX (11%) and tumor suppressor TP53 (16%) have also been reported in PDTC. High rates of novel mutations (MED12 and RBM10) have been reported in fatal PDTC (15% and 12%, respectively). Chromosome 1q gains represent the most common arm-level alterations in PDTC, and those patients show worse survival rates. Chromosome 22q losses are also found in PDTC and show strong association with RAS mutation. Conclusions: These new insights into the clinicopathologic and molecular characteristics of PDTC, together with further advancement in ultra-deep sequencing technologies, will be conducive in narrowing the focus in order to develop novel targeted therapies and improve the outcomes in PDTC patients.
With appropriate surgery and adjuvant therapy, excellent locoregional control can be achieved in PDTC. Disease-specific deaths occurred due to distant metastases and rarely due to uncontrolled locoregional recurrence in this series.
Purpose Patients with anaplastic thyroid cancer have a very high death rate. In contrast, deaths from non-anaplastic thyroid cancer are much less common. The genetic alterations in fatal non-anaplastic thyroid cancers have not been reported. Experimental Design We performed next-generation sequencing of 410 cancer genes from 57 fatal non-anaplastic thyroid primary cancers. Results were compared to The Cancer Genome Atlas study (TCGA study) of papillary thyroid cancers (PTC) and to the genomic changes reported in anaplastic thyroid cancer (ATC). Results There was a very high prevalence of TERT promoter mutations, comparable to that of anaplastic thyroid cancer, and these co-occurred with BRAF and RAS mutations. A high incidence of chromosome 1q gain was seen highlighting its importance in tumor aggressiveness. Two novel fusion genes DLG5-RET and OSBPL1A-BRAF were identified. There was a high frequency of mutations in MED12 and these were mutually exclusive to TERT promoter mutations and also to BRAF and RAS mutations. In addition, a high frequency of mutations in RBM10 were identified and these co-occurred with RAS mutations and PIK3CA mutations. Compared to the PTCs in TCGA, there were higher frequencies of mutations in TP53, POLE, PI3K/AKT/mTOR pathway effectors, SWI/SNF subunits, and histone methyltransferases. Conclusions These data support a model whereby fatal non-anaplastic thyroid cancers arise from well-differentiated tumors through the accumulation of key additional genetic abnormalities. The high rate of TERT promoter mutations, MED12 mutations, RBM10 mutations and chromosome 1q gain highlight their likely association with tumor virulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.