In this study, various solid uranium oxycompounds and TiO2-supported materials based on nanocrystalline anatase TiO2 are synthesized using uranyl nitrate hexahydrate as a precursor. All uranium-contained samples are characterized using N2 adsorption, XRD, UV–vis, Raman, TEM, XPS and tested in the oxidation of a volatile organic compound under visible light of the blue region to find correlations between their physicochemical characteristics and photocatalytic activity. Both uranium oxycompounds and TiO2-supported materials are photocatalytically active and are able to completely oxidize gaseous organic compounds under visible light. If compared to the commercial visible-light TiO2 KRONOS® vlp 7000 photocatalyst used as a benchmark, solid uranium oxycompounds exhibit lower or comparable photocatalytic activity under blue light. At the same time, uranium compounds contained uranyl ion with a uranium charge state of 6+, exhibiting much higher activity than other compounds with a lower charge state of uranium. Immobilization of uranyl ions on the surface of nanocrystalline anatase TiO2 allows for substantial increase in visible-light activity. The photonic efficiency of reaction over uranyl-grafted TiO2, 12.2%, is 17 times higher than the efficiency for commercial vlp 7000 photocatalyst. Uranyl-grafted TiO2 has the potential as a visible-light photocatalyst for special areas of application where there is no strict control for use of uranium compounds (e.g., in spaceships or submarines).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.