BackgroundEngineered proteins, with non-immunoglobulin scaffolds, have become an important alternative to antibodies in many biotechnical and therapeutic applications. When compared to antibodies, tailored proteins may provide advantageous properties such as a smaller size or a more stable structure.ResultsAvidin is a widely used protein in biomedicine and biotechnology. To tailor the binding properties of avidin, we have designed a sequence-randomized avidin library with mutagenesis focused at the loop area of the binding site. Selection from the generated library led to the isolation of a steroid-binding avidin mutant (sbAvd-1) showing micromolar affinity towards testosterone (Kd ~ 9 μM). Furthermore, a gene library based on the sbAvd-1 gene was created by randomizing the loop area between β-strands 3 and 4. Phage display selection from this library led to the isolation of a steroid-binding protein with significantly decreased biotin binding affinity compared to sbAvd-1. Importantly, differential scanning calorimetry and analytical gel-filtration revealed that the high stability and the tetrameric structure were preserved in these engineered avidins.ConclusionsThe high stability and structural properties of avidin make it an attractive molecule for the engineering of novel receptors. This methodology may allow the use of avidin as a universal scaffold in the development of novel receptors for small molecules.
Proteins with high specificity, affinity, and stability are needed for biomolecular recognition in a plethora of applications. Antibodies are powerful affinity tools, but they may also suffer from limitations such as low stability and high production costs. Avidin and streptavidin provide a promising scaffold for protein engineering, and due to their ultratight binding to D-biotin they are widely used in various biotechnological and biomedical applications. In this study, we demonstrate that the avidin scaffold is suitable for use as a novel receptor for several biologically active small molecules: Artificial, chicken avidin-based proteins, antidins, were generated using a directed evolution method for progesterone, hydrocortisone, testosterone, cholic acid, ketoprofen, and folic acid, all with micromolar to nanomolar affinity and significantly reduced biotin-binding affinity. We also describe the crystal structure of an antidin, sbAvd-2(I117Y), a steroid-binding avidin, which proves that the avidin scaffold can tolerate significant modifications without losing its characteristic tetrameric beta-barrel structure, helping us to further design avidin-based small molecule receptors.
Efficient and robust subcloning is essential for the construction of high-diversity DNA libraries in the field of directed evolution. We have developed a more efficient method for the subcloning of DNA-shuffled libraries by employing recombination cloning (Gateway). The Gateway cloning procedure was performed directly after the gene reassembly reaction, without additional purification and amplification steps, thus simplifying the conventional DNA shuffling protocols. Recombination-based cloning, directly from the heterologous reassembly reaction, conserved the high quality of the library and reduced the time required for the library construction. The described method is generally compatible for the construction of DNA-shuffled gene libraries.
A stable, bioactive cellulose acetate (CA) surface was developed by functionalizing the surface with highly thermostable avidin form. The CA films were first functionalized with a mixture of 3-aminopropyltrimethoxysilane and tetraethoxysilane to introduce free amino groups onto the surface of CA films. Free amino groups were functionalized with glutaraldehyde to obtain an activated surface for covalent biomolecule immobilization. A genetically engineered, high-affinity biotin-binding protein chimeric avidin, ChiAVD(I117Y), was used for biofunctionalization of the surface. The chimeric avidin protein has an increased stability in chemically harsh conditions and at high temperature when compared to wt (strept)avidin. The biological activity, i.e., biotin-binding capacity, of the immobilized protein was probed by [(3)H]-biotin. The activity of the chimeric avidin on functionalized CA films was fully retained over the three months' study period. The biotin-binding capacity of the immobilized chimeric avidin was compared to that of immobilized streptavidin, chicken avidin, and rhizavidin and significant differences between proteins were detected. The developed material offers a valuable platform for the development of inexpensive in vitro diagnostics and also supports biosensing applications that are required to operate under demanding conditions.
BackgroundAvidin is a chicken egg-white protein with high affinity to vitamin H, also known as D-biotin. Many applications in life science research are based on this strong interaction. Avidin is a homotetrameric protein, which promotes its modification to symmetrical entities. Dual-chain avidin, a genetically engineered avidin form, has two circularly permuted chicken avidin monomers that are tandem-fused into one polypeptide chain. This form of avidin enables independent modification of the two domains, including the two biotin-binding pockets; however, decreased yields in protein production, compared to wt avidin, and complicated genetic manipulation of two highly similar DNA sequences in the tandem gene have limited the use of dual-chain avidin in biotechnological applications.Principal FindingsTo overcome challenges associated with the original dual-chain avidin, we developed chimeric dual-chain avidin, which is a tandem fusion of avidin and avidin-related protein 4 (AVR4), another member of the chicken avidin gene family. We observed an increase in protein production and better thermal stability, compared with the original dual-chain avidin. Additionally, PCR amplification of the hybrid gene was more efficient, thus enabling more convenient and straightforward modification of the dual-chain avidin. When studied closer, the generated chimeric dual-chain avidin showed biphasic biotin dissociation.SignificanceThe improved dual-chain avidin introduced here increases its potential for future applications. This molecule offers a valuable base for developing bi-functional avidin tools for bioseparation, carrier proteins, and nanoscale adapters. Additionally, this strategy could be helpful when generating hetero-oligomers from other oligomeric proteins with high structural similarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.