In a genomic screen we isolated the Drosophila gene hugin (hug, cytology 87C1-2) by cross-hybridisation to a human glial cell line-derived neurotrophic factor cDNA. Upon cDNA sequence analysis and in vitro expression assays, the hugin gene was found to encode a signal peptide containing proprotein that was further processed in Schneider-2 cells into peptides similar to known neuropeptides. Two of the peptides were similar to FXPRL-amides (pyrokinins) and to the ecdysis-triggering hormone, respectively. The former displayed myostimulatory activity in a bioassay on the cockroach hyperneural muscle preparation, as well as in the Drosophila heart muscle assay. Hugin is expressed during the later half of embryogenesis and during larval stages in a subgroup of neurosecretory cells of the suboesophageal ganglion. Ubiquitous ectopic hugin expression resulted in larval death predominantly at or shortly after ecdysis from second to third instar, suggesting that at least one of the posttranslational cleavage products affects molting of the larva by interfering with the regulation of ecdysis.
Nisin is a small post-translationally modified lanthionine-containing peptide (lantibiotic) produced by certain Lactococcus lactis strains which has a high antimicrobial activity against several pathogenic Gram-positive bacteria. Northern blots and RT/PCR analyses of the nisin-producing strain N8 revealed that the nisZBTC/PRKF€G gene cluster, responsible for nisin biosynthesis, immunity and regulation, consists of two operons, nisZBTC/PRK and nisFEG. The promoter of the nisF€G operon was mapped. The -35 to -1 region upstream of the transcription start of the nisF€G promoter showed 73% identity with the corresponding region upstream of the nisA and nisZ gene. In contrast to earlier reports, nisin was found to be secreted during the early stages of growth as well as later in the growth cycle. The secreted nisin was adsorbed on the surface of the cells and was released to the medium during mid-exponential growth, when the pH in the medium fell below 55. In nisZB antisense and nisT deletion mutant strains constructed in this study the transcription of the nisin operons, nisin production and immunity were lost. Provision of external nisin restored the transcription of both operons in the mutant strains, showing that the operons are coordinately regulated by mature nisin. Nisin induction of the mutant strains also resulted in an increased amount of the Nisl protein and an increase in the level of immunity. Induction using higher concentrations of nisin yielded a higher level of immunity. These results showed that the nisin promoters are under positive control in an autoregulatory manner and that antimicrobial peptides can also function as signal molecules.
Single-chain antibodies consist of the variable, antigen-binding domains of antibodies joined to a continuous polypeptide by genetically engineered peptide linkers. We have used the flexible interdomain linker region of a fungal cellulase to link together the variable domains of an anti-2-phenyloxazolone IgG1 and show here that the resulting single-chain antibody is efficiently secreted and released to the culture medium of Escherichia coli. The yield of affinity-purified single-chain antibody is 1-2 mg/l of culture medium and its affinity and stability are comparable to those of the corresponding native IgG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.