Vello tõugu 1 & peep palumaa 1* it has been reported that cu(ii) ions in human blood are bound mainly to serum albumin (HSA), ceruloplasmin (CP), alpha-2-macroglobulin (α2M) and His, however, data for α2M are very limited and the thermodynamics and kinetics of the copper distribution are not known. We have applied a new LC-ICP MS-based approach for direct determination of Cu(II)-binding affinities of HSA, CP and α2M in the presence of competing Cu(II)-binding reference ligands including His. The ligands affected both the rate of metal release from Cu•HSA complex and the value of K D. Slow release and K D = 0.90 pM was observed with nitrilotriacetic acid (NTA), whereas His showed fast release and substantially lower K D = 34.7 fM (50 mM HEPES, 50 mM NaCl, pH 7.4), which was explained with formation of ternary His•cu•HSA complex. High mM concentrations of EDTA were not able to elicit metal release from metallated CP at pH 7.4 and therefore it was impossible to determine the K D value for CP. In contrast to earlier inconclusive evidence, we show that α2M does not bind Cu(II) ions. In the human blood serum ~75% of Cu(II) ions are in a nonexchangeable manner bound to CP and the rest exchangeable copper is in an equilibrium between HSA (~25%) and Cu(II)-His-Xaa ternary complexes (~0.2%).
Oligomers are commonly observed intermediates at the initial stages of amyloid fibril formation. They are toxic to neurons and cause decrease in neural transmission and long-term potentiation. We describe an in vitro study of the initial steps in amyloid fibril formation by human stefin B, which proved to be a good model system. Due to relative stability of the initial oligomers of stefin B, electrospray ionization mass spectrometry (ESI MS) could be applied in addition to size exclusion chromatography (SEC). These two techniques enabled us to separate and detect distinguished oligomers from the monomers: dimers, trimers, tetramers, up to decamers. The amyloid fibril formation process was followed at different pH and temperatures, including such conditions where the process was slow enough to detect the initial oligomeric species at the very beginning of the lag phase and those at the end of the lag phase. Taking into account the results of the lower-order oligomers transformations early in the process, we were able to propose an improved model for the stefin B fibril formation.
Biological fluid sample collection often includes the risk of blood contamination that may alter the proteomic profile of biological fluid. In proteomics studies, exclusion of contaminated samples is usually based on visual inspection and counting of red blood cells in the sample; analysis of specific blood derived proteins is less used. To fill the gap, we developed a fast and sensitive method for ascertainment of blood contamination in crude biological fluids, based on specific blood-derived protein, hemoglobin detection by MALDI-TOF MS. The MALDI-TOF MS based method allows detection of trace hemoglobin with the detection limit of 0.12 nM. UV-spectrometry, which was used as reference method, was found to be less sensitive. The main advantages of the presented method are that it is fast, effective, sensitive, requires very small sample amount and can be applied for detection of blood contamination in various biological fluids collected for proteomics studies. Method applicability was tested on human cerebrospinal and follicular fluid, which proteomes generally do not contain hemoglobin, however, which possess high risk for blood contamination. Present method successfully detected the blood contamination in 12 % of cerebrospinal fluid and 24 % of follicular fluid samples. High percentage of contaminated samples accentuates the need for initial inspection of proteomic samples to avoid incorrect results from blood proteome overlap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.