The health status of some 6,000 workers from Latvia who went to clean-up the Chernobyl Nuclear Power Plant (CNPP) site following the explosion on 26 April 1986 has been analyzed. The data on these workers have been recorded in the Latvian State Register of Occupational disease patients and people exposed to ionizing radiation due to Chernobyl NPP accident (Latvian State Register) that was established in 1994. From these data, estimates have been made of external ionizing radiation to which these workers were exposed together with observations on the impact of exposure to heavy metals (especially lead and zinc) and radioactive isotopes released during the reactor 'meltdown'. These factors along with psycho-emotional and social-economic stresses account for a marked excess of mortality and morbidity in the group of CNPP accident clean-up workers compared with that of the non-exposed normal Latvian population adjusted for age and sex. The number of diseases or conditions in the CNPP accident clean-up workers has progressively risen from an average of 1.3 in 1986 to 10.9 in 2007. This exceeds for the Latvian population when adjusted for age and sex. The most serious conditions affect the nervous, digestive, respiratory, cardiovascular, endocrine (especially thyroid) and immunological systems. While the morbidity associated with diseases of the respiratory and digestive systems has decreased in recent years that in the other systems is increasing. In recent years, there has been an increased occurrence of cancers affecting the thyroid, prostate and stomach. Clinical and laboratory investigations suggest that surviving CNPP accident clean-up workers exhibit signs of immuno-inflammatory reactions causing premature aging with evidence of autoimmune diseases and immunological deficiencies or abnormalities. It is suggested that the CNPP accident clean-up workers may have a specific syndrome, the 'Chernobyl post-radiation neurosomatic polypathy', due to sustained oxidant stress injury, as a result of exposure to radiation and lead.
The fluorescent probe ABM was used to characterize lymphocyte membranes and blood plasma albumin from cancer patients suffering from colorectal cancer or gastric cancers at Stages II-IV. The aim of these studies was to evaluate the potential utility of measures of ABM fluorescence intensity as a standard tool in the analyses of host immune status and for a clinical interpretation of alterations in albumin per se and lymphocyte functional activity in cancer patients. The fluorescence intensity of ABM in the blood plasma decreased from control values and showed specific differences in each of the differing patients groups; these changes corresponded to cancer stage. The significant decrease in ABM fluorescence in the plasma could be explained, in part, by a diminished binding capacity of the albumin of these patients. The lymphocyte distribution among the subsets of patients also differed. Interestingly, the ABM fluorescence in the cell suspension and blood plasma was also found to correlate with select immunological parameters (CD4(+):CD8(+) ratios, lymphocyte counts, etc.) in the patients. These results obtained here showed that there was a strong agreement between changes in ABM spectral characteristics and both clinical and pathological estimates of disease (i.e., gastrointestinal cancers) severity. Thus, the use of ABM spectroscopy appears to be another tool that might be of some used by clinicians to monitor the course of certain diseases, such as gastrointestinal cancers.
(RR= 1.82,) is also associated with this outcome, although nonsignificantly. Distinguishing stress-related from radiation-induced effects in this data set was difficult and these findings should provide a basis for later hypothesis testing in other cohorts. Environ Health Perspect 105(Suppl 6): 1539-1544 (1997)
The fluorescent probe ABM (3-aminobenzanthrone derivative) one of the fluorescent probes synthesized in Riga Technical University proved to be an excellent, independent model for studying cell membranes. In our work we have investigated the possibility of using the fluorescent probe ABM for detection of immune state in patients with different pathologies. There is a strong correlation among all studied ABM spectral parameters, immunological characteristics, clinical and laboratory investigations of the all observed patients groups. The obtained results suggest that ABM spectral parameters in cell suspension reflect the alterations of the cellular mechanisms of immunity. Therefore fluorescent method could be used as preliminary screening test in immune diagnostics instead of more expensive, time consuming methods (subset detection, radioisotope method etc.) used as routine in clinics. Spectral parameters of ABM reflect a wide range of interrelated (interdependent) characteristics of cells (physico-chemical state and microviscosity of membrane, proliferating and lipid metabolic activity of cells, distribution of cells among subsets). The observed change of the studied parameters reflects alterations of the cellular mechanisms of immunity which is a main focus for its application as preliminary screening test in immune diagnostics. The fluorescence based method is sensitive, less expensive and time consuming, technically simple and convenient.
The outcome of the Chernobyl nuclear power plant (CNPP) accident was that a huge number of people were exposed to ionizing radiation. Previous studies of CNPP clean-up workers from Latvia revealed a high occurrence of age-associated degenerative diseases and cancer in young adults, as well as a high mortality as a result of cardiovascular disorders at age 45–54 years. DNA tandem repeats that cap chromosome ends, known as telomeres, are sensitive to oxidative damage and exposure to ionizing radiation. Telomeres are important in aging processes and carcinogenesis. The aim of this study was to investigate the long-term effect of protracted ionizing radiation exposure on telomere length in CNPP clean-up workers. Relative telomere length (RTL) was measured in peripheral blood leukocytes of 595 CNPP clean-up workers and 236 gender- and age-matched controls using real-time quantitative polymerase chain reaction (q-PCR). Close attention was paid to participation year and tasks performed during the worker's stay in Chernobyl, health status, and RTL differences between subgroups. Telomere shortening was not found in CNPP clean-up workers; on the contrary, their RTL was slightly greater than in controls (P = 0.001). Longer telomeres were found in people who worked during 1986, in those undertaking ‘dirty’ tasks (digging and deactivation), and in people with cancer. Shorter telomeres appeared frequently in those with cataract, osteoporosis, atherosclerosis, or coronary heart disease. We conclude that the longer telomeres revealed in people more heavily exposed to ionizing radiation probably indicate activation of telomerase as a chromosome healing mechanism following damage, and reflect defects in telomerase regulation that could potentiate carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.