Highlights Cellulose acetate films were impregnated with thymol using supercritical CO2 Target thymol contents for desired antibacterial activity were in the range 26-30% Thymol prevented S. aureus and P. aeruginosa attachment to films' surfaces Released thymol reduced biofilm formation on the surrounding surfaces The films showed strong anti-biofilm activity against antibiotic resistant strains Graphical abstarct
The goal of this work was to synthesize and characterize ternary rubber blends based on polyisoprene (natural rubber (NR)), polybutadiene rubber (BR), and styrene–butadiene rubber (SBR) (NR/BR/SBR = 25/25/50) reinforced with different loading silica (SiO2) nanoparticles (0–100 part per hundred parts of rubber (phr)). The specimens were subjected to thermooxidative aging at 100°C, for two times: at 72 and 168 h, respectively, and then mechanically stretched to fracture by tension with a Zwick 1425 (Zwick GmbH, Ulm, Germany) universal tensile testing machine. Rheological and mechanical properties were used as characterization of the ternary rubber blends. The reinforcing performance of the filler was investigated using rheometric, mechanical, and swelling measurements, thermogravimetric analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy with attenuated total reflectance. Hardness, tensile strength, elongation at break, and swelling degree were assessed before and after thermal aging. There was a remarkable decrease in the optimum cure time ( tc90) and the scorch time ( ts2), which was associated with a decrease in the cure rate index of (NR/BR/SBR = 25/25/50) ternary rubber blend with 60 phr of filler loading. Interaction between rubber blend and SiO2 nano-filler is confirmed by moving absorption band from 1450 cm−1 to 1480 cm−1.
Supercritical CO 2 was used as a green solvent and impregnation medium for loading cellulose acetate beads with carvacrol in order to obtain a biomaterial with antibacterial properties. Supercritical solvent impregnation was performed in a high-pressure view cell at temperature of 50 ∘ C and pressures of 10, 21, and 30 MPa with the processing time ranging from 2 to 18 h. The rate of impregnation increased with the pressure increase. However, maximum impregnation yield (round 60%) was not affected by the pressure applied. Selected samples of the impregnated cellulose acetate containing 6-60% of carvacrol were proven to have considerable antibacterial effect against Gram-positive and Gram-negative bacterial strains including methicillin-resistant Staphylococcus aureus which causes severe infections in humans and animals. In addition, cellulose acetate beads containing 6.0-33.6% of carvacrol were shown to have a porous structure with submicron pores which is of interest for the controlled delivery applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.