Tropical forests, a key-category of land ecosystems, are faced with the world’s highest levels of habitat conversion and associated biodiversity loss. In tropical Asia, Dipterocarpaceae are one of the economically and ecologically most important tree families, but their genomic diversity and evolution remain understudied, hampered by a lack of available genetic resources. Southern China represents the northern limit for Dipterocarpaceae, and thus changes in habitat ecology, community composition and adaptability to climatic conditions are of particular interest in this group. Phylogenomics is a tool for exploring both biodiversity and evolutionary relationships through space and time using plastome, nuclear and mitochondrial genome. We generated full plastome and Nuclear Ribosomal Cistron (NRC) data for Chinese Dipterocarpaceae species as a first step to improve our understanding of their ecology and evolutionary relationships. We generated the plastome of Dipterocarpus turbinatus , the species with the widest distribution using it as a baseline for comparisons with other taxa. Results showed low level of genomic diversity among analysed range-edge species, and different evolutionary history of the incongruent NRC and plastome data. Genomic resources provided in this study will serve as a starting point for future studies on conservation and sustainable use of these dominant forest taxa, phylogenomics and evolutionary studies.
Malvaceae s.l., the most diverse family within Malvales, includes well-known species of great economic importance like cotton, cacao, and durian. Despite numerous phylogenetic analyses employing multiple markers, relationships between several of its nine subfamilies, particularly within the largest lineage /Malvadendrina, remain unclear. In this study, we attempted to resolve the relationships within the major clades of Malvaceae s.l. using plastid genomes of 48 accessions representing all subfamilies. Maximum likelihood and Bayesian analyses recovered a fully resolved and well-supported topology confirming the split of the family into /Byttneriina (/Grewioideae +/Byttnerioideae) and /Malvadendrina. Within /Malvadendrina, /Helicteroideae occupied the earliest branching position, followed by /Sterculioideae, /Brownlowioideae, /Tiliodeae, and /Dombeyoideae formed a clade sister to /Malvatheca (/Malvoideae +/Bombacoideae), a grouping morphologically supported by the lack of androgynophore. Results from dating analyses suggest that all subfamilies originated during hot or warm phases in the Late Cretaceous to Paleocene. This study presents a well-supported phylogenetic framework for Malvaceae s.l. that will aid downstream revisions and evolutionary studies of this economically important plant family.
Dipterocarpaceae are one of the economically most important native tree families for timber production in tropical Asia. We report the complete chloroplast genome of Vatica odorata (Griff.) Symington, the first in the family Dipterocarpaceae. The chloroplast genome was 151,465 bp in length, with a large single-copy (LSC) region of 83,538 bp and a small single-copy (SSC) region of 20,095 bp, separated by two inverted repeat (IRs) regions of 23,916 bp. It contained 126 genes, including 90 coding genes, 30 tRNA genes, and 8 rRNA genes. The overall GC content was 37.2%, and 43.1%, 35.2%, and 33.3% in the IRs, LSC and SSC regions, respectively. A phylogenetic tree showed Vatica accumulated more variation when compared with Tilia, and that internal relationships in Malvales need to be reassessed. ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.