Tissue-resident memory T cells (T(RM) cells) provide superior protection against infection in extralymphoid tissues. Here we found that CD103(+)CD8(+) T(RM) cells developed in the skin from epithelium-infiltrating precursor cells that lacked expression of the effector-cell marker KLRG1. A combination of entry into the epithelium plus local signaling by interleukin 15 (IL-15) and transforming growth factor-β (TGF-β) was required for the formation of these long-lived memory cells. Notably, differentiation into T(RM) cells resulted in the progressive acquisition of a unique transcriptional profile that differed from that of circulating memory cells and other types of T cells that permanently reside in skin epithelium. We provide a comprehensive molecular framework for the local differentiation of a distinct peripheral population of memory cells that forms a first-line immunological defense system in barrier tissues.
Herpes simplex viruses (HSVs) are frequent human pathogens and the ability to engineer these viruses underpins much research into their biology and pathogenesis. Often the ultimate aim is to produce a virus that has the desired phenotypic change and no additional alterations in characteristics. This requires methods that minimally disrupt the genome and, for insertions of foreign DNA, sites must be found that can be engineered without disrupting HSV gene function or expression. This study advances both of these requirements. Firstly, the use of homologous recombination between the virus genome and plasmids in mammalian cells is a reliable way to engineer HSV such that minimal genome changes are made. This has most frequently been achieved by cotransfection of plasmid and isolated viral genomic DNA, but an alternative is to supply the virus genome by infection in a transfection-infection method. Such approaches can also incorporate CRISPR/Cas9 genome engineering methods. Current descriptions of infection-transfection methods, either with or without the addition of CRISPR/Cas9 targeting, are limited in detail and the extent of optimization. In this study it was found that transfection efficiency and the length of homologous sequences improve the efficiency of recombination in these methods, but the targeting of the locus to be engineered by CRISPR/Cas9 nucleases has an overriding positive impact. Secondly, the intergenic space between UL26 and UL27 was reexamined as a site for the addition of foreign DNA and a position identified that allows insertions without compromising HSV growth in vitro or in vivo.
In standard uses of CRISPR/Cas9 technology, the cutting of genomes and their efficient repair are considered to go hand-in-hand to achieve desired genetic changes. This includes the current approach for engineering genomes of large dsDNA viruses. However, for poxviruses we show that Cas9-guide RNA complexes cut viral genomes soon after their entry into cells, but repair of these breaks is inefficient. As a result, Cas9 targeting makes only modest, if any, improvements to basal rates of homologous recombination between repair constructs and poxvirus genomes. Instead, Cas9 cleavage leads to inhibition of poxvirus DNA replication thereby suppressing virus spread in culture. This unexpected outcome allows Cas9 to be used as a powerful tool for selecting conventionally generated poxvirus recombinants, which are otherwise impossible to separate from a large background of parental virus without the use of marker genes. This application of CRISPR/Cas9 greatly speeds up the generation of poxvirus-based vaccines, making this platform considerably more attractive in the context of personalised cancer vaccines and emerging disease outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.