The aim of this study was to compare the systemic hemodynamic effects of four commonly used anesthetic regimens in mice that were chronically instrumented for direct and continuous measurements of cardiac output (CO). Mice (CD-1, Swiss, and C57BL6 strains) were instrumented with a transit-time flow probe placed around the ascending aorta for CO measurement. An arterial catheter was inserted into the aorta 4 or 5 days later for blood pressure measurements. After full recovery, hemodynamic parameters including stroke volume, heart rate, CO, mean arterial pressure (MAP), and total peripheral resistance were measured with animals in the conscious state. General anesthesia was then induced in these mice using isoflurane (Iso), urethane, pentobarbital sodium, or ketamine-xylazine (K-X). The doses and routes of administration of these agents were given as required for general surgical procedures in these animals. Compared with the values obtained for animals in the conscious resting state, MAP and CO decreased during all anesthetic interventions, and hemodynamic effects were smallest for Iso (MAP, -24 +/- 3%; CO, -5 +/- 7%; n = 15 mice) and greatest for K-X (MAP, -51 +/- 6%; CO, -37 +/- 9%; n = 8 mice), respectively. The hemodynamic effects of K-X were fully antagonized by administration of the alpha(2)-receptor antagonist atipamezole (n = 8 mice). These results indicate that the anesthetic Iso has fewer systemic hemodynamic effects in mice than the nonvolatile anesthetics.
The short-term (<24 h) consequences of oxidative stress induced by ischaemia-reperfusion (IR) have been studied extensively in the mouse heart. However, much less is known about the long-term effects inflicted by a brief ischaemic period on the murine heart. We therefore examined the structural and functional consequences of a 30 min ischaemic period after 2 and 8 weeks of reperfusion and compared these to the effects induced by permanent occlusion of the left anterior descending coronary artery (LAD). The latter procedure resulted in transmural myocardial infarcts of about 52% of the left ventricle. In contrast, the single 30 min ischaemic period led to infarct sizes of about 13% of the left ventricle (range, 4-23%) at 2 and 8 weeks after reperfusion. Maximal cardiac contractility responses (+dP/dt) to dobutamine infusion and volume loading were depressed at 2, but not at 8 weeks after IR. The restoration of cardiac contractility at 8 weeks after IR was associated with a significant 20% enlargement of the end-diastolic volume and 16% increase of the left ventricular wall thickness. These changes in cardiac geometry were less pronounced at 2 weeks after IR. Histological examination revealed that the IR injury was associated with prominent calcification. At 2 and at 8 weeks after IR, 25 ± 5 and 38 ± 5% of the injured area was calcified as observed in 69 and 73% of the animals, respectively. After permanent occlusion of the LAD, calcification was not observed and healing of the affected area was characterized by thinning and dilatation of the infarcted myocardium. These data indicate that, in mice, a single 30 min period of ischaemia reduced ventricular contractility up to at least 2 weeks after reperfusion. However, 8 weeks after IR, cardiac function was restored by eccentric hypertrophy associated with calcification of the injured ventricular wall.
Mice are increasingly used to study the early molecular mechanisms inducing injury to the heart following myocardial infarction. To date, two-dimensional gel electrophoresis combined with mass spectrometry has not been applied to identify changes in protein expression in myocardial tissue of mice subjected in vivo to permanent ischaemia (PI) or ischaemia-reperfusion (IR). In the PI group, ischaemia was induced for 210 min by ligation of the left anterior descending coronary artery while in the IR group, ischaemia was maintained for 30 min and reperfusion was allowed for 180 min. In both groups, the area of the left ventricle at risk was processed for 2-dimensional gel electrophoresis. By comparing protein density changes in cytosolic as well as membrane fractions, we found a total of 32 protein spots that were differentially expressed. Twenty spots changed in expression level after PI alone, four spots after IR alone, and eight spots changed in both models. Identified proteins with MALDI TOF-TOF and LC-MS/MS can be classified into functional groups of anticoagulant proteins, structural proteins, inflammatory-related proteins, transcription-and translation-related proteins, heat shock proteins (HSPs), metabolism-related proteins and miscellaneous. A remarkable finding was the IR-specific translocation of annexins (A3 and A5) from the cytosolic to the membrane compartment, a phenomenon that was verified by Western blotting. Four proteins were changed in expression level at multiple spot locations, characterized by a difference in isoelectric point. In the case of cardiac troponin T and HSP-20, these changes were also dependent on the model. In addition, one spot for the proteins adenylate kinase 1, cardiac troponin T and HSP-20 was uniquely present in the IR and/or PI groups and not in the respective sham groups. The specific alterations in protein expression that took place after PI and IR may stimulate the search for new tools to diagnoze myocardial infarction and to characterize specific pathology-related changes in protein expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.