Please cite this article in press as: L. Iocchi et al., ROBOCUP@HOME: Analysis and results of evolving competitions for domestic and service robots, Artificial Intelligence (2015), http://dx.
AbstractScientific competitions are becoming more common in many research areas of artificial intelligence and robotics, since they provide a shared testbed for comparing different solutions and enable the exchange of research results. Moreover, they are interesting for general audiences and industries. Currently, many major research areas in artificial intelligence and robotics are organizing multiple-year competitions that are typically associated with scientific conferences.One important aspect of such competitions is that they are organized for many years. This introduces a temporal evolution that is interesting to analyze. However, the problem of evaluating a competition over many years remains unaddressed. We believe that this issue is critical to properly fuel changes over the years and measure the results of these decisions. Therefore, this article focuses on the analysis and the results of evolving competitions.In this article, we present the RoboCup@Home competition, which is the largest worldwide competition for domestic service robots, and evaluate its progress over the past seven years. We show how the definition of a proper scoring system allows for desired functionalities to be related to tasks and how the resulting analysis fuels subsequent changes to achieve general and robust solutions implemented by the teams. Our results show not only the steadily increasing complexity of the tasks that RoboCup@Home robots can solve but also the increased performance for all of the functionalities addressed in the competition.We believe that the methodology used in RoboCup@Home for evaluating competition advances and for stimulating changes can be applied and extended to other robotic competitions as well as to multi-year research projects involving Artificial Intelligence and Robotics.
For quick access to new handwritten collections, current handwriting recognition methods are too cumbersome. They cannot deal with the lack of labeled data and would require extensive laboratory training for each individual script, style, language and collection. We propose a biologically inspired whole-word recognition method which is used to incrementally elicit word labels in a live, web-based annotation system, named Monk. Since human labor should be minimized given the massive amount of image data, it becomes important to rely on robust perceptual mechanisms in the machine. Recent computational models of the neuro-physiology of vision are applied to isolated word classification. A primate cortex-like mechanism allows to classify text-images that have a low frequency of occurrence. Typically these images are the most difficult to retrieve and often contain named entities and are regarded as the most important to people. Usually standard pattern-recognition technology cannot deal with these text-images if there are not enough labeled instances. The results of this retrieval system are compared to normalized word-image matching and appear to be very promising.
In this paper, we describe the structure and the performance of a layout analysis system developed for processing the handwritten documents contained in a large historical collection of very high importance in the Netherlands. We introduce a method based on contour tracing that generates curvilinear separation paths between text lines in order to preserve the ascenders and descenders. Our methods are relevant to research on digitization and retrieval of handwritten historical documents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.