Traditional bulk isotopic analysis is a pivotal tool for mapping consumer-resource interactions in food webs but has largely failed to adequately describe parasite-host relationships. Thus, parasite-host interactions remain undescribed in food web frameworks despite these relationships increasing linkage density, connectance and ecosystem biomass. Compound-specific stable isotopes from amino acids provides a promising novel approach that may aid in mapping parasite-host relationships in food webs. Here we apply a combination of traditional bulk stable isotope analyses and compound-specific isotopic analysis of nitrogen in amino acids to examine resource use and trophic interactions of five parasites from three hosts from a marine coastal food web (Wadden Sea, European Atlantic). By comparing isotopic compositions of bulk and amino acid nitrogen, we aimed to characterize isotopic fractionation occurring between parasites and their hosts and to clarify parasite trophic positions. Our results indicate that parasitic trophic interactions were more accurately identified using compound-specific stable isotope analysis due to removal of underlying source isotopic variation for both parasites and hosts. The compound-specific method provided clearer trophic discrimination factors in comparison to bulk isotope methods. Amino acid compound specific isotope analysis has widely been applied to examine trophic position within food webs, but our analyses suggest that the method is particularly useful for clarifying the feeding strategies for parasitic species. Baseline isotopic information provided by source amino acids allows clear identification of the fractionation from parasite metabolism by integrating underlying isotopic variations from the host tissues. However, like for bulk isotope analysis, the application of a universal trophic discrimination factor to parasite-host relationships remains inappropriate for compound-specific stable isotope analysis. Despite this limitation, compound-specific stable isotope analysis is and will continue to be a valuable tool to increase our understanding of parasitic interactions in marine food webs.
1) Traditional bulk isotopic analysis is a pivotal tool for mapping consumer-resource interactions in food webs but has largely failed to adequately describe parasite-host relationships. Thus, parasite-host interactions remain largely understudied in food web frameworks despite these relationships increasing linkage density, connectance, and ecosystem biomass. Compound-specific stable isotopes from amino acids provides a promising novel approach that may aid in mapping parasitic interactions in food webs. However, to date it has not been applied to parasitic trophic interactions. 2) Here we use a combination of traditional bulk stable isotope analyses and compound-specific isotopic analysis of the nitrogen in amino acids to examine resource use and trophic interactions of five parasites from three hosts from a marine coastal food web (Wadden Sea, European Atlantic). By comparing isotopic compositions of bulk and amino acid nitrogen, we aimed to characterize isotopic fractionation occurring between parasites and their hosts and to clarify the trophic position of the parasites. 3) Our results showed that parasitic trophic interactions were more accurately identified when using compound-specific stable isotope analysis due to removal of underlying source isotopic variation for both parasites and hosts, and avoidance of the averaging of amino acid variability in bulk analyses through use of multiple trophic amino acids. The compound-specific method provided clear trophic discrimination factors in comparison to bulk isotope methods, however, those differences varied significantly among parasite species. 4) Amino acid compound specific isotope analysis has widely been applied to examine trophic position within food webs, but our analyses suggest that the method is particularly useful for clarifying the feeding strategies for parasitic species. Baseline isotopic information provided by source amino acids allows clear identification of the fractionation occurring due to parasite metabolism by integrating underlying isotopic variations from the host tissues. However, like for bulk isotope analysis, the application of a universal trophic discrimination factor to parasite-host relationships remains inappropriate for compound-specific stable isotope analysis. Despite this limitation, compound-specific stable isotope analysis is and will continue to be a valuable tool to increase our understanding of parasitic interactions in marine food webs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.