Назовем кольцо R обобщенно полукоммутативным, если для любых элементов a, b ∈ R их произведение ab = 0 только тогда, когда существуют натуральные числа m, n такие, что a m Rb n = 0. В работе показано, что класс обобщенно полукоммутативных колец содержится в классе центральных полукоммутативных колец и содержит класс слабо полукоммутативных-I колец, причем включения строгие. Изучена связь обобщенно полукоммутативных колец и колец некоторых других известных типов. Приведен способ построения обобщенно полукоммутативных семейств по данному обобщенно полукоммутативному кольцу. Также в работе получено несколько критериев того, что обобщенно полукоммутативное кольцо будет редуцированным кольцом. Ключевые слова: полукоммутативное кольцо, обобщенно полукоммутативное кольцо.
A ring R is called a left (right) SF-ring if simple left (right) iî-modules axe flat. It is still unknown whether a left (right) SF-ring is von Neumann regular. In this paper, we give some conditions for a left (right) SF-ring to be (a) von Neumann regular; (b) strongly regular; (c) division ring. It is proved that: (1) a right SF-ring R is regular if maximal essential right (left) ideals of R are weakly left (right) ideals of R (this result gives an affirmative answer to the question raised by Zhang in 1994); (2) a left SF-ring R is strongly regular if every non-zero left (right) ideal of R contains a non-zero left (right) ideal of R which is a W-ideal; (3) if iî is a left SF-ring such that Z(x) (r(a;)) is an essential left (right) ideal for every right (left) zero divisor x of R, then ñ is a division ring.
This paper introduces a class of rings called left nil zero semicommutative rings ( LNZS rings ), wherein a ring R is said to be LNZS if the left annihilator of every nilpotent element of R is an ideal of R. It is observed that reduced rings are LNZS but not the other way around. So, this paper provides some conditions for an LNZS ring to be reduced and among other results, it is proved that R is reduced if and only if the ring of upper triangular matrices over R is LNZS. Furthermore, it is shown that the polynomial ring over an LNZS may not be LNZS and so is the case of the skew polynomial over an LNZS ring. Therefore, this paper investigates the LNZS property over the polynomial extension and skew polynomial extension of an LNZS ring with some additional conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.