A recombinant non-glycosylated and acidic form of avidin was designed and expressed in soluble form in baculovirusinfected insect cells. The mutations were based on the same principles that guided the design of the chemically and enzymatically modified avidin derivative, known as NeutraLite Avidin. In this novel recombinant avidin derivative, five out of the eight arginine residues were replaced with neutral amino acids, and two of the lysine residues were replaced by glutamic acid. In addition, the carbohydrate-bearing asparagine-17 residue was altered to an isoleucine, according to the known sequences of avidin-related genes. The resultant mutant protein, termed recombinant NeutraLite Avidin, exhibited superior properties compared to those of avidin, streptavidin and the conventional NeutraLite Avidin, prepared by chemo-enzymatic means. In this context, the recombinant mutant is a single molecular species, which possesses strong biotin-binding characteristics. Due to its acidic pI, it is relatively free from non-specific binding to DNA and cells. The recombinant NeutraLite Avidin retains seven lysines per subunit, which are available for further conjugation and derivatization.z 2000 Federation of European Biochemical Societies.
Sea urchin fibropellins are epidermal growth factor homologues that harbor a C-terminal domain, similar in sequence to hen egg-white avidin and bacterial streptavidin. The fibropellin sequence was used as a conceptual template for mutation of designated conserved tryptophan residues in the biotin-binding sites of the tetrameric proteins, avidin and streptavidin. Three different mutations of avidin, Trp-110-Lys, Trp-70-Arg and the double mutant, were expressed in a baculovirus-infected insect cell system. A mutant of streptavidin, Trp-120-Lys, was similarly expressed. The homologous tryptophan to lysine (WC CK) mutations of avidin and streptavidin were both capable of binding biotin and biotinylated material. Their affinity for the vitamin was, however, significantly reduced: from K d V V10 315 M of the wild-type tetramer down to K d V V10 38 M for both WC CK mutants. In fact, their binding to immobilized biotin matrices could be reversed by the presence of free biotin. The Trp-70-Arg mutant of avidin bound biotin very poorly and the double mutant (which emulates the fibropellin domain) failed to bind biotin at all. Using a gel filtration fast-protein liquid chromatography assay, both WC CK mutants were found to form stable dimers in solution. These findings may indicate that mimicry in the nature of the avidin sequence and fold by the fibropellins is not designed to generate biotin-binding, but may serve to secure an appropriate structure for facilitating dimerization.z 1999 Federation of European Biochemical Societies.
Chicken avidin, a homotetramer that binds four molecules of biotin was converted to a monomeric form by successive mutations of interface residues to alanine. The major contribution to monomer formation was the mutation of two aspartic acid residues, which together account for ten hydrogen bonding interactions at the 1-4 interface. Mutation of these residues, together with the three hydrophobic residues at the 1-3 interface, led to stable monomer formation in the absence of biotin. Upon addition of biotin, the monomeric avidin reassociated to the tetramer, which exhibited properties similar to those of native avidin, with respect to biotin binding, thermostability, and protease resistance. To our knowledge, these unexpected results represent the first example of a small monovalent ligand that induces oligomerization of a monomeric protein. This study may suggest a biological role for low molecular weight ligands in inducing oligomerization and in maintaining the stability of multimeric protein assemblies.
Avidin, a positively charged egg-white glycoprotein, is a widely used tool in biotechnological applications because of its ability to bind biotin strongly. The high pI of avidin (V10.5), however, is a hindrance in certain applications due to non-specific (charge-related) binding. Here we report a construction of a series of avidin charge mutants with pIs ranging from 9.4 to 4.7. Rational design of the avidin mutants was based on known crystallographic data together with comparative sequence alignment of avidin, streptavidin and a set of avidin-related genes which occur in the chicken genome. All charge mutants retained the ability to bind biotin tightly according to optical biosensor interaction analysis. In most cases, their thermal stability characteristics were indistinguishable from those of the wildtype avidin. Our results demonstrate that the charge properties of avidin can be modified without disturbing the crucial biotinbinding activity.z 1998 Federation of European Biochemical Societies.
We have studied the structural elements that affect ligand exchange between the two high affinity biotinbinding proteins, egg white avidin and its bacterial analogue, streptavidin. For this purpose, we have developed a simple assay based on the antipodal behavior of the two proteins toward hydrolysis of biotinyl p-nitrophenyl ester (BNP). The assay provided the experimental basis for these studies. It was found that biotin migrates unidirectionally from streptavidin to avidin. Conversely, the biotin derivative, BNP, is transferred in the opposite direction, from avidin to streptavidin. A previous crystallographic study (Huberman, T., Eisenberg-Domovich, Y., Gitlin, G., Kulik, T., Bayer, E. A., Wilchek, M., and Livnah, O. (2001) J. Biol. Chem. 276, 32031-32039) provided insight into a plausible explanation for these results. These data revealed that the non-hydrolyzable BNP analogue, biotinyl p-nitroanilide, was almost completely sheltered in streptavidin as opposed to avidin in which the disordered conformation of a critical loop resulted in the loss of several hydrogen bonds and concomitant exposure of the analogue to the solvent. In order to determine the minimal modification of the biotin molecule required to cause the disordered loop conformation, the structures of avidin and streptavidin were determined with norbiotin, homobiotin, and a common long-chain biotin derivative, biotinyl ⑀-aminocaproic acid. Six new crystal structures of the avidin and streptavidin complexes with the latter biotin analogues and derivatives were thus elucidated. It was found that extending the biotin side chain by a single CH 2 group (i.e. homobiotin) is sufficient to result in this remarkable conformational change in the loop of avidin. These results bear significant biotechnological importance, suggesting that complexes containing biotinylated probes with streptavidin would be more stable than those with avidin. These findings should be heeded when developing new drugs based on lead compounds because it is difficult to predict the structural and conformational consequences on the resultant protein-ligand interactions.The interaction of egg white avidin and bacterial streptavidin with biotin has evolved into an indispensable tool for general use in the biological sciences and as a model for the study of the interaction of a ligand with a protein (1). Both avidin and streptavidin bind biotin with an essentially immeasurably high affinity constant (2).During the course of our studies on the avidin/streptavidinbiotin complex, we sought to examine whether biotin or its derivatives can be exchanged between the two proteins. Such a transfer can be of both practical and theoretical value. If practical application is desired, one can envision a situation where one of the proteins is first introduced into an experimental system followed by addition of the second biotin-binding protein. The question then arises whether one protein replaces the other or whether the effect will be cumulative. Such a situation may indeed occur upon in vivo ap...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.