Lycopene, the major tomato carotenoid, has been found to inhibit proliferation of several types of cancer cells, including those of breast, lung, and endometrium. By extending the work to the HL-60 promyelocytic leukemia cell line, we aimed to evaluate some mechanistic aspects of this effect. Particularly, the possibility was examined that the antiproliferative action of the carotenoid is associated with induction of cell differentiation. Lycopene treatment resulted in a concentration-dependent reduction in HL-60 cell growth as measured by [3H]thymidine incorporation and cell counting. This effect was accompanied by inhibition of cell cycle progression in the G0/G1 phase as measured by flow cytometry. Lycopene alone induced cell differentiation as measured by phorbol ester-dependent reduction of nitro blue tetrazolium and expression of the cell surface antigen CD14. Results of several recent intervention studies with beta-carotene, which have revealed no beneficial effects of this carotenoid, suggest that a single dietary component cannot explain the anticancer effect of diets rich in vegetables and fruits. Thus another goal of our study was to examine whether lycopene has the ability to synergize with other natural anticancer compounds, such as 1,25-dihydroxyvitamin D3, which when used alone are therapeutically active only at high and toxic concentrations. The combination of low concentrations of lycopene with 1,25-dihydroxyvitamin D3 exhibited a synergistic effect on cell proliferation and differentiation and an additive effect on cell cycle progression. Such synergistic antiproliferative and differentiating effects of lycopene and other compounds found in the diet and in plasma may suggest the inclusion of the carotenoid in the diet as a cancer-preventive measure.
Human erythrocytes suspended in plasma, or in phosphate buffered saline (PBS), were exposed to ionizing radiation. Potassium leakage from irradiated erythrocytes is significantly higher in PBS than in plasma. The potassium leakage decreases when PBS is gradually replaced by plasma. These findings suggest that some of the plasma constituents have radioprotective properties. The potassium leakage per cell is independent of the hematocrit, Hct. The potassium leakage is attributed to the formation of radiation defects in the membrane. Analysis of the effect of radiation dose, plasma and cell concentrations on the product of the number and surface area of the radiation defects indicates that the radiation damage is mainly due to the direct formation of free radicals in the cell membrane. The radioprotective effect of plasma is attributed to surface reactions of these free radicals with plasma constituents adsorbed on the membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.