Micronutrient deficiencies (MNDs) remain widespread among people in sub-Saharan Africa1–5, where access to sufficient food from plant and animal sources that is rich in micronutrients (vitamins and minerals) is limited due to socioeconomic and geographical reasons4–6. Here we report the micronutrient composition (calcium, iron, selenium and zinc) of staple cereal grains for most of the cereal production areas in Ethiopia and Malawi. We show that there is geospatial variation in the composition of micronutrients that is nutritionally important at subnational scales. Soil and environmental covariates of grain micronutrient concentrations included soil pH, soil organic matter, temperature, rainfall and topography, which were specific to micronutrient and crop type. For rural households consuming locally sourced food—including many smallholder farming communities—the location of residence can be the largest influencing factor in determining the dietary intake of micronutrients from cereals. Positive relationships between the concentration of selenium in grain and biomarkers of selenium dietary status occur in both countries. Surveillance of MNDs on the basis of biomarkers of status and dietary intakes from national- and regional-scale food-composition data1–7 could be improved using subnational data on the composition of grain micronutrients. Beyond dietary diversification, interventions to alleviate MNDs, such as food fortification8,9 and biofortification to increase the micronutrient concentrations in crops10,11, should account for geographical effects that can be larger in magnitude than intervention outcomes.
Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.
The greatest challenge for tropical agriculture is land degradation and reduction in soil fertility for sustainable crop and livestock production. Associated problems include soil erosion, nutrient mining, competition for biomass for multiple uses, limited application of inorganic fertilizers, and limited capacity of farmers to recognize the decline in soil quality and its consequences on productivity. Integrated soil fertility management (ISFM) is an approach to improve crop yields, while preserving sustainable and long-term soil fertility through the combined judicious use of fertilizers, recycled organic resources, responsive crop varieties, and improved agronomic practices, which minimize nutrient losses and improve the nutrient-use efficiency of crops. Soil fertility and nutrient management studies in Ethiopia under on-station and on-farm conditions showed that the combined application of inorganic and organic fertilizers significantly increased crop yields compared to either alone in tropical agro-ecosystems. Yield benefits were more apparent when fertilizer application was accompanied by crop rotation, green manuring, or crop residue management. The combination of manure and NP fertilizer could increase wheat and faba bean grain yields by 50%-100%, whereas crop rotation with grain legumes could increase cereal grain yields by up to 200%. Although organic residues are key inputs for soil fertility management, about 85% of these residues is used for livestock feed and energy; thus, there is a need for increasing crop biomass. The main incentive for farmers to adopt ISFM practices is economic benefits. The success of ISFM also depends on research and development institutions to provide technical support, technology adoption, information dissemination, and creation of market incentives for farmers in tropical agro-ecosystems.
A B S T R A C TSmall-scale irrigation is playing an important role in adapting to climate change, achieving food security, and improving household incomes. The Ethiopian Government considers irrigated agriculture as a primary engine of economic growth and plans to increase the current level of irrigation infrastructure three-fold by the end of 2015. However, there has been concern regarding the performance and management of existing small-scale irrigation. Based on the assessment of 52 small-scale irrigation schemes, and three case study sites, we describe the challenges and interventions required to improve irrigation water management in Ethiopia. Though most schemes are operational, many do not operate at full capacity, due to design failures, excessive siltation, poor agronomic and water management practices, and weak local institutions. In addition to low returns, there is competition for irrigation water between upstream and downstream users, vegetable growers and cereal growers, and between farmers with large irrigable plots and those with small plots. Despite these challenges, our field assessment revealed that small scale irrigation increases crop yields, improves crop diversification, and reduces the risk of crop failure. We emphasize in this paper the need for incentives to improve productivity and minimize conflicts, while enhancing innovation capacity, developing scheme-specific intensification strategies, and promoting collective action. We also describe how benefits from water investments could be substantially increased by overcoming design constraints, * j o u r n a l h o m e p a g e : w w w. e l s e v i e r. c o m / l o c a t e / w r r strengthening water user associations, and protecting catchments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.