We study the quasi-Menger and weakly Menger properties in locales. Our definitions, which are adapted from topological spaces by replacing subsets with sublocales, are conservative in the sense that a topological space is quasi-Menger (resp. weakly Menger) if and only if the locale it determines is quasi-Menger (resp. weakly Menger). We characterize each of these types of locales in a language that does not involve sublocales. Regarding localic results that have no topological counterparts, we show that an infinitely extremally disconnected locale (in the sense of Arietta [1]) is weakly Menger if and only if its smallest dense sublocale is weakly Menger. We show that if the product of locales is quasi-Menger (or weakly Menger) then so is each factor. Even though the localic product ?j?J?(Xj) is not necessarily isomorphic to the locale ?(?j?JXj), we are able to deduce as a corollary of the localic result that if the product of topological spaces is weakly Menger, then so is each factor.
<p>The Menger and the almost Menger properties are extended to locales. Regarding the former, the extension is conservative (meaning that a space is Menger if and only if it is Menger as a locale), and the latter is conservative for sober T<sub>D</sub>-spaces. Non-spatial Menger (and hence almost Menger) locales do exist, so that the extensions genuinely transcend the topological notions. We also consider projectively Menger locales, and show that, as in spaces, a locale is Menger precisely when it is Lindelöf and projectively Menger. Transference of these properties along localic maps (via direct image or pullback) is considered.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.