When using models and simulations in the design and reconfiguration of manufacturing systems, it is difficult to gage the fidelity of the model, especially if the system being modeled doesn't yet exist. The model cannot typically be validated until the system is in place. We propose the concept of Hybrid Process Simulation (HPS), an extension of traditional Hardware-in-Loop (HIL) technology, as a bridge between pure simulation and the final physical system. In this paper, we present a framework for swapping a virtual device with its real counterpart. The virtual model is developed using simulation software obtained from the vendor of the actual device, so that the model offers the same functionality as the actual device. Using the vendor simulation software, we were able to demonstrate the modularity of HPS, since the virtual and actual device can be more easily swapped with minimal changes to the rest of the existing system. The framework is presented as a proof-of-concept for HPS applications in the design and reconfiguration of a manufacturing line. A case study describing the implementation of the hybrid process simulation using a virtual and real robot on the Reconfigurable Factory Testbed at the University of Michigan is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.