Organochlorine (OC) pesticides and the more persistent polychlorinated biphenyls (PCBs) have well-established dose-dependent toxicities to birds, fish and mammals in experimental studies, but the actual impact of OC pollutants on European marine top predators remains unknown. Here we show that several cetacean species have very high mean blubber PCB concentrations likely to cause population declines and suppress population recovery. In a large pan-European meta-analysis of stranded (n = 929) or biopsied (n = 152) cetaceans, three out of four species:- striped dolphins (SDs), bottlenose dolphins (BNDs) and killer whales (KWs) had mean PCB levels that markedly exceeded all known marine mammal PCB toxicity thresholds. Some locations (e.g. western Mediterranean Sea, south-west Iberian Peninsula) are global PCB “hotspots” for marine mammals. Blubber PCB concentrations initially declined following a mid-1980s EU ban, but have since stabilised in UK harbour porpoises and SDs in the western Mediterranean Sea. Some small or declining populations of BNDs and KWs in the NE Atlantic were associated with low recruitment, consistent with PCB-induced reproductive toxicity. Despite regulations and mitigation measures to reduce PCB pollution, their biomagnification in marine food webs continues to cause severe impacts among cetacean top predators in European seas.
The conservation status of small cetaceans has significantly worsened since the 1980s, when the baiji was the only species of small cetacean listed as Endangered by IUCN. Now the baiji is almost certainly extinct and 13 other species, subspecies, or populations (hereafter units-to-conserve or units) of small cetaceans are listed as Critically Endangered (CR) on the IUCN Red List. Bycatch is the main threat to 11 of the CR units. Entanglement in gillnets contributed to the extinction of the baiji and is responsible for the imminent extinction of the vaquita. Unfortunately, there is no simple technical solution to the problem of bycatch of small cetaceans. If the 8 CR units with 100 or fewer remaining individuals are to be saved, conservation zones must be established where gillnets are eliminated and bans on their use are strictly enforced. Recent experience with the vaquita in Mexico demonstrates that enforcement of such conservation zones can be very difficult. Ineffective enforcement is also a problem for at least 4 of the other CR units. Time is very short and, unless major efforts are made now to address the bycatch problem, the prospects for CR small cetaceans and other at-risk aquatic megafauna are grim. The ultimate long-term solution to the bycatch problem is the development of efficient, inexpensive, alternative fishing gear that can replace gillnets without jeopardizing the livelihoods of fishermen. Good fishery governance and the direct involvement of fishing communities are also essential to the successful conservation of most threatened populations of small cetaceans.
Marine ecosystems are increasingly threatened by the cumulative effects of multiple human pressures. Cumulative effect assessments (CEAs) are needed to inform environmental policy and guide ecosystem-based management. Yet, CEAs are inherently complex and seldom linked to real-world management processes. Therefore we propose entrenching CEAs in a risk management process, comprising the steps of risk identification, risk analysis and risk evaluation. We provide guidance to operationalize a risk-based approach to CEAs by describing for each step guiding principles and desired outcomes, scientific challenges and practical solutions. We reviewed the treatment of uncertainty in CEAs and the contribution of different tools and data sources to the implementation of a risk based approach to CEAs. We show that a risk-based approach to CEAs decreases complexity, allows for the transparent treatment of uncertainty and streamlines the uptake of scientific outcomes into the science-policy interface. Hence, its adoption can help bridging the gap between science and decision-making in ecosystem-based management.
Complex social structure is a prominent feature in several mammal species. Such structure may lead to behavioural diversity not only among populations, but also within a single population, where different subsets of a population may exhibit different types of behaviour. As a consequence, understanding social structure is not only interesting biologically, but may also help conservation and management efforts, because not all segments of a population necessarily respond to or interact with human activities in the same way, or at the same time. In this study, we examined the social structure of common bottlenose dolphins (Tursiops truncatus) in the Gulf of Trieste and adjacent waters (northern Adriatic Sea), based on a 9-year dataset, using social network metrics and association indices. We assessed whether different segments of the population show differences in behaviour and interactions with fisheries. Dolphin social network was structured into distinct social clusters of mixed sexes. We found no evidence of male alliances. The two largest social clusters overlapped spatially, but not temporally, as they used the same area at different times of day. Such diel temporal partitioning does not appear to have been documented in cetaceans previously. The two clusters also differed in ways they interact with fisheries, as one regularly interacted with trawlers, while the other did not. This study demonstrates how different segments of animal populations can interact differently with human activities and in turn respond differently to anthropogenic impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.