Basin have increased winter ventilation in the ocean interior, making this region 46 structurally similar to that of the western Eurasian Basin. The associated enhanced 47 release of oceanic heat has reduced winter sea-ice formation at a rate now comparable to 48 losses from atmospheric thermodynamic forcing, thus explaining the recent reduction in 49 sea-ice cover in the eastern Eurasian Basin. This encroaching "atlantification" of the 50Eurasian Basin represents an essential step toward a new Arctic climate state, with a 51 substantially greater role for Atlantic inflows. 52 53 3 Over the last decade, the Arctic Ocean has experienced dramatic losses of sea-ice loss in 54 the summers, with record-breaking years in 2007 and 2012 for both the Amerasian Basin 55 and the Eurasian Basin (EB). More remarkably, the eastern EB has been nearly ice-free 56 (<10 % ice coverage) at the end of summer since 2011 (Fig. 1). Most sea ice-mass loss 57 results from summer solar heating of the surface mixed layer (SML) through cracks in the 58 ice and open water, and consequent melting of the lower surface of the ice (1-3). Heat 59 advected into the EB interior by Atlantic water (AW) generally has not been considered 60 an important contributor to sea-ice reduction, due to effective insulation of the overlying 61 cold halocline layer (CHL) (4) that separates the cold and fresh SML and pack ice from 62 heat carried by the warm and saline AW. 63There are, however, reasons to believe the role of AW heat in sea-ice reduction is not 64 negligible, and may be increasingly important (5). Nansen (6) warming has slowed slightly since 2008 (Fig. 2c). 74Strong stratification, which is found in most of the Arctic Ocean, prevents vigorous 75 ventilation of the AW. One notable exception is the western Nansen Basin, north and 76 4 northeast of Svalbard, where proximity to the sources of inflowing AW makes possible 77 significant interactions between the SML and the ocean interior (5). Specifically, weakly 78 stratified AW entering the Nansen Basin through Fram Strait is subject to direct 79 ventilation in winter, caused by cooling and haline convection associated with sea ice 80 formation (15). This ventilation leads to the reduction of sea-ice thickness along the 81 continental slope off Svalbard (16, 17). In the past, these conditions have been limited to 82 the western EB, since winter ventilation of AW in the eastern EB was constrained by 83 stronger stratification there. However, newly acquired data show that conditions 84 previously only identified in the western Nansen Basin now can be observed in the 85 eastern EB as well. We call this eastward progression of the western EB conditions the 86 "atlantification" of the EB of the Arctic Ocean. 87 Overview of sea ice state 88The progressive decline in sea ice coverage of the Arctic Ocean during the satellite era, at 89 13.4 % per decade during September (18), has been accompanied by decreases in average 90 sea ice thickness of at least 1.7 m in the central Arctic (19, 20). In the region of t...
A 15-year duration record of mooring observations from the eastern (>70°E) Eurasian Basin (EB) of the Arctic Ocean is used to show and quantify the recently increased oceanic heat flux from intermediate-depth (∼150-900 m) warm Atlantic Water (AW) to the surface mixed layer (SML) and sea ice. The upward release of AW heat is regulated by the stability of the overlying halocline, which we show has weakened substantially in recent years. Shoaling of the AW has also contributed, with observations in winter 2017-2018 showing AW at only 80 m depth, just below the wintertime surface mixed layer (SML), the shallowest in our mooring records. The weakening of the halocline for several months at this time implies that AW heat was linked to winter convection associated with brine rejection during sea ice formation. This resulted in a substantial increase of upward oceanic heat flux during the winter season, from an average of 3-4 W/m2 in 2007-2008 to >10 W/m2 in 2016-2018. This seasonal AW heat loss in the eastern EB is equivalent to a more than a two-fold reduction of winter ice growth. These changes imply a positive feedback as reduced sea ice cover permits increased mixing, augmenting the summer-dominated ice-albedo feedback.
Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.