The maturation of nickel-dependent enzymes requires the participation of several accessory proteins. Typically the hydrolysis of nucleotides is necessary for the final metal transfer steps. The ATPase CooC has been implicated in the insertion of nickel into the Ni,Fe cluster (C cluster) of the carbon monoxide dehydrogenase from Rhodospirillum rubrum. Analysis of the amino acid sequence of CooC suggests the presence of motifs typical for the MinD family of SIMIBI class NTPases, which contain a deviant Walker A motif. The genome of the carboxidotrophic hydrogenogenic bacterium Carboxydothermus hydrogenoformans contains three open reading frames with distinct sequence homology to CooC from R. rubrum. We overproduced, isolated, and studied CooC1 from C. hydrogenoformans. As-isolated CooC1 is monomeric in the absence of ligands but dimerizes in the presence of either nickel, ADP, or ATP. CooC1 shows ATPase activity, and the ADP- and ATP-bound dimeric states are distinguished by their stability. The K8A mutant of CooC1, in which alanine replaces the signature lysine typical for the deviant Walker A motif in the MinD family, is incapable of both ATP hydrolysis and ATP-dependent dimerization. This corroborates that CooC1 is indeed a member of the MinD family and suggests an analogous dynamic equilibrium between monomeric and dimeric states. CooC proteins are involved in the insertion of nickel into carbon monoxide dehydrogenases, and we found that one CooC1 dimer binds one Ni(II) ion with nanomolar affinity. Ni-induced dimerization and the Ni(II)-CooC1 stoichiometry suggest that the Ni-binding site of CooC1 occurs in the dimer interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.