The hypothesis of ecohydrological separation (ES) proposes that the water contained in surface soils is not uniformly extracted by root water uptake nor uniformly displaced by infiltration. Rather vegetation selectively removes water held under tension, and water infiltrating wet soil will bypass much of the water‐filled pore space. Methodological differences across previous studies have contributed to disagreement concerning the prevalence of ES. We measured stable isotopes of O and H in precipitation, snowpack, canopy throughfall, and stream water over a period of 18 months in a temperate catchment. At six locations across a wetness gradient, we sampled bulk soil water isotopes weekly and xylem water of Eastern hemlock and American beech stems seasonally. We used these observations in a soil column model including StorAge Selection functions to estimate the isotopic composition and ages of groundwater recharge and ET. Our findings suggest ES may exist with spatial and temporal heterogeneity. Root water uptake ages possibly vary between Eastern hemlock and American beech, suggesting functional strategies for water uptake may control the presence of ES. Newly infiltrated water bypassing the shallow soil was the most likely explanation for bulk soil isotopic measurements made at upslope locations during the winter and summer seasons, whereas rapid displacement of stored soil water by infiltrated waters was the most likely during the spring and fall seasons. Future research incorporating high temporal frequency soil and plant xylem water isotopic measurements applied to StorAge Selection functions may provide a useful framework for understanding rooting zone isotope dynamics.
Colloid transport through complex and dynamic (i.e. non-steady-state) hydrologic systems is rarely studied, owing to the difficulty of constraining initial and boundary conditions and quantifying colloid-porous media and colloid-colloid interactions in transient flow systems. Here we present a particle tracer experiment conducted on a sloped lysimeter receiving periodic rainfall events for 10 days. Four unique, DNA-labelled particle tracers were injected both in sequence and in parallel, together with a conservative tracer (deuterium), over the course of the first day and allowed to move through the system. Discharge-particle tracer concentration curves and the spatial distribution of particle tracer mass retained in the soil at the end of the experiment were found to be highly dependent on the timing of the tracer injection and the precipitation input and subsequent dynamic response of the water table. Overall, neglecting the total DLT recovery rate, the DLT particle tracer breakthrough trend (DNA-labelled particle tracer 4) was similar to deuterium and decreased over time with the exception of a few peaks later in the experiment. The individual particle tracer breakthrough curves suggest a complex system with different fast transport mechanisms (e.g. capillary barrier and size exclusion effect) and slow retention-release mechanisms (e.g. straining, physical-chemical adsorption), which resulted in particle tracers transferring faster than deuterium in the first 10 h of the experiment but being exceeded by deuterium soon after deuterium started to break through. The experiment not only highlights the interaction of repeated colloidal pollution events in hydrologic systems with different pre-event saturation conditions, but also the benefits of using multiple synchronous or sequential tracer applications to dissect explicit formulations of water flow and colloid transport processes in complex and dynamic hydrological systems. Such explicit process formulations could help improve understanding hydrologically-controlled transport through catchments and the quantitative prediction of these processes with water quality models. 2003a; Smith et al., 2007; Vasiliadou and Chrysikopoulos, 2011; Wan and Wilson, 1994b; Wang et al., 2018). Colloids have a high sorptive capacity and have been shown to facilitate transport of many contaminants through the vadose zone to streams or groundwater including heavy metals, pesticides, herbicides and other pollutants that
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.