[1] Because of its relevance for the global climate the Atlantic meridional overturning circulation (AMOC) has been a major research focus for many years. Yet the question of which physical mechanisms ultimately drive the AMOC, in the sense of providing its energy supply, remains a matter of controversy. Here we review both observational data and model results concerning the two main candidates: vertical mixing processes in the ocean's interior and windinduced Ekman upwelling in the Southern Ocean. In distinction to the energy source we also discuss the role of surface heat and freshwater fluxes, which influence the volume transport of the meridional overturning circulation and shape its spatial circulation pattern without actually supplying energy to the overturning itself in steady state. We conclude that both wind-driven upwelling and vertical mixing are likely contributing to driving the observed circulation. To quantify their respective contributions, future research needs to address some open questions, which we outline.
We document the development of the first version of the U.K. Earth System Model UKESM1.The model represents a major advance on its predecessor HadGEM2-ES, with enhancements to all component models and new feedback mechanisms. These include a new core physical model with a well-resolved stratosphere; terrestrial biogeochemistry with coupled carbon and nitrogen cycles and enhanced land management; tropospheric-stratospheric chemistry allowing the holistic simulation of radiative forcing from ozone, methane, and nitrous oxide; two-moment, five-species, modal aerosol; and ocean biogeochemistry with two-way coupling to the carbon cycle and atmospheric aerosols. The complexity of coupling between the ocean, land, and atmosphere physical climate and biogeochemical cycles in UKESM1 is unprecedented for an Earth system model. We describe in detail the process by which the coupled model was developed and tuned to achieve acceptable performance in key physical and Earth system quantities and discuss the challenges involved in mitigating biases in a model with complex connections between its components. Overall, the model performs well, with a stable pre-industrial state and good agreement with observations in the latter period of its historical simulations. However, global mean surface temperature exhibits stronger-than-observed cooling from 1950 to 1970, followed by rapid warming from 1980 to 2014. Metrics from idealized simulations show a high climate sensitivity relative to previous generations of models: Equilibrium climate sensitivity is 5.4 K, transient climate response ranges from 2.68 to 2.85 K, and transient climate response to cumulative emissions is 2.49 to 2.66 K TtC −1 . Plain Language SummaryWe describe the development and behavior of UKESM1, a novel climate model that includes improved representations of processes in the atmosphere, ocean, and on land. These processes are inter-related: For example, dust is produced on the land and blown up into the atmosphere where it affects the amount of sunlight falling on Earth. Dust can also be dissolved in the ocean, where it affects marine life. This in turn changes both the amount of carbon dioxide absorbed by the ocean and the material emitted from the surface into the atmosphere, which has an affect on the formation of clouds. UKESM1 includes many processes and interactions such as these, giving it a high level of complexity. Ensuring realistic process behavior is a major challenge in the development of our model, and we have carefully tested this. UKESM1 performs well, correctly exhibiting stable results from a continuous pre-industrial simulation (used to provide a reference for future experiments) and showing good agreement
Abstract. Versions 6 and 7 of the UK Global Ocean configuration (known as GO6 and GO7) will form the ocean components of the Met Office GC3.1 coupled model and UKESM1 earth system model to be used in CMIP6 1 simulations. The label "GO6" refers to a traceable hierarchy of three model configurations at nominal 1, 1/4 and 1/12• resolutions. The GO6 configurations are described in detail with particular focus on aspects which have been updated since the previous version (GO5). Results of 30-year forced ocean-ice integrations with the 1/4 • model are presented, in which GO6 is coupled to the GSI8.1 sea ice configuration and forced with CORE2 2 fluxes. GO6-GSI8.1 shows an overall improved simulation compared to GO5-GSI5.0, especially in the Southern Ocean where there are more realistic summertime mixed layer depths, a reduced near-surface warm and saline biases, and an improved simulation of sea ice. The main drivers of the improvements in the Southern Ocean simulation are tuning of the vertical and isopycnal mixing parameters. Selected results from the full hierarchy of three resolutions are shown. Although the same forcing is applied, the three models show large-scale differences in the near-surface circulation and in the short-term adjustment of the overturning circulation. The GO7 configuration is identical to the GO6 1/4 • configuration except that the cavities
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.