A 2D tomographic terahertz imaging set-up using a single pixel imaging approach is realized, where a liquid helium cooled bolometer is utilized as a bucket detector and a mercury-arc lamp serves as a broadband terahertz source. The different patterns of the terahertz radiation, which are necessary for the single pixel imaging approach, are realized by spatially addressed photodoping of a high resistivity float zone silicon window, employing a near-infrared laser diode, which is spatially modulated by a digital micromirror device. The two investigated sample objects have cylindrical and cuboid shapes and consist of polypropylene. Both sample shapes cause strong influences of refraction, reflection and diffraction, which distort the measured projections and thus have to be considered in the tomographic reconstruction. In order to consider these effects, a model is developed which combines refraction and diffraction effects by a hybrid approach using ray tracing and scalar diffraction theory yielding finally projections of the sample objects. These simulated projections are compared to the measured projections and show a good agreement between the experimental results and the developed model. In accordance with this result, an optimization problem is formulated, which offers an approach for tomographic reconstruction using the developed model.
We realize a compact two-dimensional tomographic terahertz imaging experiment involving only one photoconductive antenna (PCA) simultaneously serving as a transmitter and receiver of the terahertz radiation. A hollow-core Teflon cylinder filled with α-Lactose monohydrate powder is studied at two terahertz frequencies, far away and at a specific absorption line of the powder. This sample is placed between the antenna and a chopper wheel, which serves as back reflector of the terahertz radiation into the PCA. Amplitude and phase information of the continuous-wave (CW) terahertz radiation are extracted from the measured homodyne self-mixing (HSM) signal after interaction with the cylinder. The influence of refraction is studied by modeling the set-up utilizing ZEMAX and is discussed by means of the measured 1D projections. The tomographic reconstruction by using the Simultaneous Algebraic Reconstruction Technique (SART) allows to identify both object geometry and α-Lactose filling.
A compact homodyne self-mixing terahertz spectroscopy concept is experimentally investigated and confirmed by calculations. This method provides amplitude and phase information of the terahertz radiation emitted by a photoconductive antenna in a transmission experiment where a rotating chopper wheel serves as a feedback mirror. As a proof-of-principle experiment the frequencydependent refractive index of Teflon is measured. V
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.