Teraryl‐based α‐helix mimetics have proven to be useful compounds for the inhibition of protein‐protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl‐based α‐helix mimetics using a benzene core unit featuring two halide leaving groups of differentiated reactivity in the Pd‐catalyzed cross‐coupling used for teraryl assembly. The use of para‐bromo iodoarene core fragments resolved the issue of hydrolysis during cross‐coupling that was observed when using triflate as a leaving group. We report a complete set of para‐bromoiodoarene core fragments decorated with side chains of all proteinogenic amino acids relevant for PPI (Ala, Arg, Asn, Asp, Cys, Gln, Glu, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val). In order to be compatible with general cross‐coupling conditions, some of the nucleophilic side chains had to be provided in a protected form to serve as stable building blocks.
Teraryl‐based α‐helix mimetics have proven to be useful compounds for the inhibition of protein‐protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl‐based α‐helix mimetics using pyridine containing boronic acid building blocks to increase the water solubility. Following our initial publication in which we have introduced the methodology in combination with sequential Pd‐catalyzed cross‐coupling for teraryl assembly, we can now report a complete set of pyridine based boronic acid building blocks decorated with side chains of all proteinogenic amino acids relevant for PPI (Ala, Arg, Asn, Asp, Cys, Gln, Glu, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, Val) to complement the core fragment set. For a representative set of teraryls we have studied the influence of the pyridine rings on the solubility of the assembled oligoarenes.
Teraryl‐based α‐helix mimetics have proven to be useful compounds for the inhibition of protein‐protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl‐based α‐helix mimetics using a benzene core unit featuring two leaving groups of differentiated reactivity in the Pd‐catalyzed cross‐coupling used for teraryl assembly. In previous publications we have introduced the methodology of 4‐iodophenyltriflates decorated with the side chains of some of the proteinogenic amino acids. We herein report the core fragments corresponding to the previously missing amino acids Arg, Asn, Asp, Met, Trp and Tyr. Therefore, our set now encompasses all relevant amino acid analogues with the exception of His. In order to be compatible with the triflate moiety, some of the nucleophilic side chains had to be provided in a protected form to serve as stable building blocks. Additionally, cross‐coupling procedures for the assembly of teraryls were investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.