We report on a monolithic thulium fiber laser with 567 W output power at 1970 nm which, to the best of our knowledge, is the highest power reported so far directly from a thulium oscillator. This is achieved by optimization of the splice parameters for the active fiber (minimizing signal light in the fiber cladding) and direct water cooling. Dual transverse mode operation is visible from the optical spectrum and can be deduced from the measured beam quality of M2=2.6.
We present a mode-locked all-fiber erbium laser that can be tuned in wavelength while in pulsed operation. A low-cost multimode interference bandpass filter based solely on standard fibers was employed in a sigma-shaped cavity design. By bending the fiber filter, the spectrum could be continuously shifted by up to 11.6 nm without interrupting pulsed operation, and output powers of more than 3.3 mW at pulse durations below 350 fs were achieved.
A system for supercontinuum generation by using a photonic crystal fiber within a synchronously pumped ring cavity is presented. The feedback led to an interaction of the generated supercontinuum with the following femtosecond laser pulses and thus to the formation of a nonlinear oscillator. The nonlinear dynamical behavior of this system was investigated experimentally and compared with numerical simulations. Steady state, period doubling and higher order multiplication of the repetition rate as well as limit cycle and chaotic behavior were observed in the supercontinuum generating system.
We numerically study the impact of feedback on supercontinuum generation within a microstructured fiber inside a ring resonator, synchronously pumped with femtosecond pulses. In certain parameter ranges we observe a steady-state oscillator-like operation mode of the system. Depending on pump power also period doubling up to chaos is shown by the system. Even with the inclusion of realistic pump noise as perturbation, the periodic behavior was still achievable in numerical modeling as well as in a first experimental verification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.