All of these institutions are in Vancouver, British Columbia, Canada Abstract Introduction: Coronavirus disease 2019 is a respiratory infection caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This virus uses the angiotensin converting enzyme II (ACE-2) as the cellular entry receptor to infect the lower respiratory tract. Because individuals with chronic obstructive pulmonary disease (COPD) are at increased risk of severe COVID-19, we determined whether ACE-2 expression in the lower airways was related to COPD and cigarette smoking.Methods: Using RNA-seq, we determined gene expression levels in bronchial epithelia obtained from cytologic brushings of 6 th to 8 th generation airways in individuals with and without COPD. We eternally validated these results from two additional independent cohorts, which used microarray technologies to measure gene expression levels from 6 th to 12 th generation airways.
Results:In the discovery cohort (n=42 participants), we found that ACE-2 expression levels were increased by 48% in the airways of COPD compared with non-COPD subjects (COPD=2.52±0.66 log2 counts per million reads (CPM) versus non-COPD= 1.70±0.51 CPM , p=7.62×10 -4 ). There was a significant inverse relationship between ACE-2 gene expression and FEV1% of predicted (r=-0.24; p=0.035). Current smoking also significantly increased ACE-2 expression levels compared with never smokers (never current smokers=2.77±0.91 CPM versus smokers=1.78±0.39 CPM, p=0.024). These findings were replicated in the two eternal cohorts.Conclusions: ACE-2 expression in lower airways is increased in patients with COPD and with current smoking. These data suggest that these two subgroups are at increased risk of serious COVID-19 infection and highlight the importance of smoking cessation in reducing the risk.
TGF-beta1 induces EMT in a Smad3-dependent manner in primary AECs. However, in asthmatic-derived ALI-AEC cultures, the number of cells undergoing EMT is greater. These findings support the hypothesis that epithelial repair in asthmatic airways is dysregulated.
The hypothesis that the small conducting airways were the major site of obstruction to airflow in normal lungs was introduced by Rohrer in 1915 and prevailed until Weibel introduced a quantitative method of studying lung anatomy in 1963. Green repeated Rohrer's calculations using Weibels new data in 1965 and found that the smaller conducting airways offered very little resistance to airflow. This conflict was resolved by seminal experiments conducted by Macklem and Mead in 1967, which confirmed that a small proportion of the total lower airways resistance is attributable to small airways <2 mm in diameter. Shortly thereafter, Hogg, Macklem, and Thurlbeck used this technique to show that small airways become the major site of obstruction in lungs affected by emphysema. These and other observations led Mead to write a seminal editorial in 1970 that postulated the small airways are a silent zone within normal lungs where disease can accumulate over many years without being noticed. This review provides a progress report since the 1970s on methods for detecting chronic obstructive pulmonary disease, the structural nature of small airways' disease, and the cellular and molecular mechanisms that are thought to underlie its pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.