We report on the production of hydrocortisone, the major adrenal glucocorticoid of mammals and an important intermediate of steroidal drug synthesis, from a simple carbon source by recombinant Saccharomyces cerevisiae strains. An artificial and fully self-sufficient biosynthetic pathway involving 13 engineered genes was assembled and expressed in a single yeast strain. Endogenous sterol biosynthesis was rerouted to produce compatible sterols to serve as substrates for the heterologous part of the pathway. Biosynthesis involves eight mammalian proteins (mature forms of CYP11A1, adrenodoxin (ADX), and adrenodoxin reductase (ADR); mitochondrial forms of ADX and CYP11B1; 3beta-HSD, CYP17A1, and CYP21A1). Optimization involved modulating the two mitochondrial systems and disrupting of unwanted side reactions associated with ATF2, GCY1, and YPR1 gene products. Hydrocortisone was the major steroid produced. This work demonstrates the feasibility of transfering a complex biosynthetic pathway from higher eukaryotes into microorganisms.
A search for maturating peptidases of the precursor protein of the mating hormone (pheromone) alpha‐factor of Saccharomyces cerevisiae was performed using short model peptides representing those sequences of the precursor protein, where cleavage is thought to occur in vivo. This search was done in a mutant lacking several of the unspecific vacuolar peptidases. The chromogenic peptide Cbz‐Tyr‐Lys‐Arg‐4‐nitroanilide led to the detection of a membrane‐bound enzyme called proteinase yscF. Cleavage of the synthetic peptide derivative occurs after the basic amino acid pair, a proposed signal for hormone processing. Optimum pH for the reaction is 7.2. The enzyme does not cleave after single basic amino acid residues indicating that it is distinct from trypsin‐like proteinases. Proteolytic activity is enhanced by Triton X‐100. The enzyme is strongly inhibited by EGTA, EDTA and mercurials but insensitive to phenylmethylsulfonyl fluoride. The enzyme activity is strongly dependent on Ca2+ ions. In a mutant (kex2), which accumulates an over‐glycosylated alpha‐factor precursor, no proteinase yscF activity can be found. Membrane‐bound peptidase activity possibly involved in removal of the arginyl and lysyl residues remaining at the carboxy terminus of the alpha‐factor pheromone peptide after the initial cut of the precursor molecule could be identified by using the model peptides Cbz‐Tyr‐Lys‐Arg and Cbz‐Tyr‐Lys.
A 500 MHz 2D 1H NMR study of recombinant insect defensin A is reported. This defense protein of 40 residues contains 3 disulfide bridges, is positively charged and exhibits antibacterial properties. 2D NMR maps of recombinant defensin A were fully assigned and secondary structure elements were localized. The set of NOE connectivities, 3JNH-alpha H coupling constants as well as 1H/2H exchange rates and delta delta/delta T temperature coefficients of NH protons strongly support the existence of an alpha-helix (residues 14-24) and of an antiparallel beta-sheet (residues 27-40). Models of the backbone folding were generated by using the DISMAN program and energy refined by using the AMBER program. This was done on the basis of: (i) 133 selected NOEs, (ii) 21 dihedral restraints from 3JNH-alpha H coupling constants, (iii) 12 hydrogen bonds mostly deduced from 1H/2H exchange rates or temperature coefficients, in addition to 9 initial disulfide bridge covalent constraints. The two secondary structure elements and the two bends connecting them involve approximately 70% of the total number of residues, which impose some stability in the C-terminal part of the molecule. The remaining N-terminal fragment forms a less well defined loop. This spatial organization, in which a beta-sheet is linked to an alpha-helix by two disulfide bridges and to a large loop by a third disulfide bridge, is rather similar to that found in scorpion charybdotoxin and seems to be partly present in several invertebrate toxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.