We compute the shear viscosity of the unitary Fermi gas above the superfluid transition temperature, using a diagrammatic technique that starts from the exact Kubo formula. The formalism obeys a Ward identity associated with scale invariance which guarantees that the bulk viscosity vanishes identically. For the shear viscosity, vertex corrections and the associated Aslamazov-Larkin contributions are shown to be crucial to reproduce the full Boltzmann equation result in the high-temperature, low fugacity limit. The frequency dependent shear viscosity η(ω) exhibits a Drude-like transport peak and a power-law tail at large frequencies which is proportional to the Tan contact. The weight in the transport peak is given by the equilibrium pressure, in agreement with a sum rule due to Taylor and Randeria. Near the superfluid transition the peak width is of the order of 0.5 T F , thus invalidating a quasiparticle description. The ratio η/s between the static shear viscosity and the entropy density exhibits a minimum near the superfluid transition temperature whose value is larger than the string theory bound /(4πk B ) by a factor of about seven.
We study transport through a one-dimensional quantum wire of correlated fermions connected to semi-infinite leads. The wire contains either a single impurity or two barriers, the latter allowing for resonant tunneling. In the leads the fermions are assumed to be non-interacting. The wire is described by a microscopic lattice model. Using the functional renormalization group we calculate the linear conductance for wires of mesoscopic length and for all relevant temperature scales. For a single impurity, either strong or weak, we find power-law behavior as a function of temperature. In addition, we can describe the complete crossover from the weak-to the strong-impurity limit. For two barriers, depending on the parameters of the enclosed quantum dot, we find temperature regimes in which the conductance follows power-laws with "universal" exponents as well as non-universal behavior. Our approach leads to a comprehensive picture of resonant tunneling. We compare our results with those of alternative approaches.
We investigate the effect of local Coulomb correlations on electronic transport through a variety of coupled quantum dot systems connected to Fermi liquid leads. We use a newly developed functional renormalization group scheme to compute the gate voltage dependence of the linear conductance, the transmission phase, and the dot occupancies. A detailed derivation of the flow equations for the dot level positions, the inter-dot hybridizations, and the effective interaction is presented. For specific setups and parameter sets we compare the results to existing accurate numerical renormalization group data. This shows that our approach covers the essential physics and is quantitatively correct up to fairly large Coulomb interactions while being much faster, very flexible, and simple to implement. We then demonstrate the power of our method to uncover interesting new physics. In several dots coupled in series the combined effect of correlations and asymmetry leads to a vanishing of transmission resonances. In contrast, for a parallel double-dot we find parameter regimes in which the two-particle interaction generates additional resonances.
A light impurity in a Fermi sea undergoes a transition from a polaron to a molecule for increasing interaction. We develop a new method to compute the spectral functions of the polaron and molecule in a unified framework based on the functional renormalization group with full self-energy feedback. We discuss the energy spectra and decay widths of the attractive and repulsive polaron branches as well as the molecular bound state, and confirm the scaling of the excited state decay rate near the transition. The quasi-particle weight of the polaron shifts from the attractive to the repulsive branch across the transition, while the molecular bound state has a very small residue characteristic for a composite particle. We propose an experimental procedure to measure the repulsive branch in a 6 Li Fermi gas using rf-spectroscopy and calculate the corresponding spectra.
We theoretically analyze inverse radiofrequency (rf) spectroscopy experiments in two-component Fermi gases. We consider a small number of impurity atoms interacting strongly with a bath of majority atoms. In two-dimensional geometries we find that the main features of the rf spectrum correspond to an attractive polaron and a metastable repulsive polaron. Our results suggest that the attractive polaron has been observed in a recent experiment [Phys. Rev. Lett. 106, 105301 (2011)].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.