PET with 18 F-choline ( 18 F-FCH) is used in the diagnosis of prostate cancer and its recurrences. In this work, biodistribution data from a recent study conducted at Skå ne University Hospital Malmö were used for the development of a biokinetic and dosimetric model. Methods: The biodistribution of 18 F-FCH was followed for 10 patients using PET up to 4 h after administration. Activity concentrations in blood and urine samples were also determined. A compartmental model structure was developed, and values of the model parameters were obtained for each single patient and for a reference patient using a population kinetic approach. Radiation doses to the organs were determined using computational (voxel) phantoms for the determination of the S factors. Results: The model structure consists of a central exchange compartment (blood), 2 compartments each for the liver and kidneys, 1 for spleen, 1 for urinary bladder, and 1 generic compartment accounting for the remaining material. The model can successfully describe the individual patients' data. The parameters showing the greatest interindividual variations are the blood volume (the clearance process is rapid, and early blood data are not available for several patients) and the transfer out from liver (the physical half-life of 18 F is too short to follow this long-term process with the necessary accuracy). The organs receiving the highest doses are the kidneys (reference patient, 0.079 mGy/MBq; individual values, 0.033-0.105 mGy/MBq) and the liver (reference patient, 0.062 mGy/MBq; individual values, 0.036-0.082 mGy/MBq). The dose to the urinary bladder wall of the reference patient varies between 0.017 and 0.030 mGy/MBq, depending on the assumptions on bladder voiding. Conclusion: The model gives a satisfactory description of the biodistribution of 18 F-FCH and realistic estimates of the radiation dose received by the patients.
Purpose External-beam radiotherapy (EBRT) is the predominant method for localized brain radiotherapy (LBRT) after resection of brain metastases (BM). Intraoperative radiotherapy (IORT) with 50-kV x‑rays is an alternative way to focally irradiate the resection cavity after BM surgery, with the option of shortening the overall treatment time and limiting normal tissue irradiation. Methods We retrospectively analyzed the outcomes of all patients who underwent neurosurgical resection of BM and 50-kV x‑ray IORT between 2013 and 2020 at Augsburg University Medical Center. Results We identified 40 patients with 44 resected BM treated with 50-kV x‑ray IORT. Median diameter of the resected metastases was 2.8 cm (range 1.5–5.9 cm). Median applied dose was 20 Gy. All patients received standardized follow-up (FU) including 3‑monthly MRI of the brain. Mean FU was 14.4 months, with a median MRI FU for alive patients of 12.2 months. Median overall survival (OS) of all treated patients was 26.4 months (estimated 1‑year OS 61.6%). The observed local control (LC) rate of the resection cavity was 88.6% (estimated 1‑year LC 84.3%). Distant brain control (DC) was 47.5% (estimated 1‑year DC 33.5%). Only 25% of all patients needed WBI in the further course of disease. The observed radionecrosis rate was 2.5%. Conclusion IORT with 50-kV x‑rays is a safe and appealing way to apply LBRT after neurosurgical resection of BM, with low toxicity and excellent LC. Close MRI FU is paramount to detect distant brain failure (DBF) early.
Purpose External beam radiotherapy (EBRT) is the predominant method for localized brain radiotherapy (LBRT) after resection of brain metastases (BM). Intraoperative radiotherapy (IORT) with 50kV x-rays is an alternative way to irradiate the resection cavity focally after BM surgery with the option to shorten the overall treatment time and limit normal tissue irradiation.Methods We retrospectively analyzed the outcomes of all patients who underwent neurosurgical resection of BM and 50kV x-ray IORT between 2013 and 2020 at Augsburg University Medical Center.Results We identified 40 patients with 44 resected BM treated with 50kV x-ray IORT. Median diameter of the resected metastases was 2.8 cm (range 1.5–5.9 cm). Median applied dose was 20 Gy. All patients received standardized follow-up (FU) including 3-monthly MRI of the brain. Mean FU was 14.4 months, with a median MRI FU for patients alive of 12.2 months. Median overall survival (OS) of all treated patients was 26.4 months (estimated 1-year OS 61.6%). The observed local control (LC) rate of the resection cavity was 88.6% (estimated 1-year LC 84.3%). Distant brain control (DC) was 47.5% (estimated 1-year DC 33.5%). Only 25% of all patients needed WBI in the further course of disease. The observed radionecrosis rate was 2.5%.Conclusion IORT with 50kV x-rays is a safe and appealing way to apply LBRT after neurosurgical resection of BM with low toxicity and excellent LC. Close MRI FU is paramount to detect distant brain failure (DBF) early.
The dosimetric studies required for planning individually tailored radioiodine therapy of benign thyroid pathologies may be too complex and time-demanding for many ordinary nuclear medicine departments. In this work, a preliminary population kinetics approach was applied to a model structure for iodine biokinetics in order to identify those model features that actually need to be individually investigated, in order to simplify the protocol for data collection in patients. Data from 29 patients undergoing radioiodine therapy for the treatment of the autonomous nodule syndrome were used in the analysis. The greatest inter-individual variations were observed in the parameters describing the transformation of iodide into organic iodine in the thyroid and in the kinetics of the organic form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.