A full list of authors and affiliations appears at the end of the paper.Purpose: To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway
Methods:We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants.Results: The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drugresistant (54%), and associated with focal cortical dysplasia (20%). Infantile spasms were reported in 10% of the probands. Sudden unexpected death in epilepsy (SUDEP) occurred in 10% of the families. Novel classification framework of all 140 epilepsy-related GATOR1 variants (including the variants of this study) revealed that 68% are loss-of-function pathogenic, 14% are likely pathogenic, 15% are variants of uncertain significance and 3% are likely benign.Conclusion: Our data emphasize the increasingly important role of GATOR1 genes in the pathogenesis of focal epilepsies (>180 probands to date). The GATOR1 phenotypic spectrum ranges from sporadic early-onset epilepsies with cognitive impairment comorbidities to familial focal epilepsies, and SUDEP.Genetics in Medicine (2018) https://doi
SUMMARYOur objective was to assess the clinical reliability of a wrist-worn, wireless accelerometer sensor for detecting generalized tonic-clonic seizures (GTCS). Seventy-three consecutive patients (age 6-68 years; median 37 years) at risk of having GTCS and who were admitted to the longterm video-electroencephalography (EEG) monitoring unit (LTM) were recruited in three centers. The reference standard was considered the seizure time points identified by experienced clinical neurophysiologists, based on the video-EEG recordings and blinded to the accelerometer sensor data. Seizure time points detected real-time by the sensor were compared with the reference standard. Patients were monitored for 17-171 h (mean 66.8; total 4,878). Thirty-nine GTCS were recorded in 20 patients. The device detected 35 seizures (89.7%). In 16 patients all seizures were detected. In three patients more than two thirds of the seizures were detected. The mean of the sensitivity calculated for each patient was 91%. The mean detection latency measured from the start of the focal seizure preceding the secondarily GTCS was 55 s (95% confidence interval [CI] 38-73 s). The rate of false alarms was 0.2/day. Our results suggest that the wireless wrist accelerometer sensor detects GTCS with high sensitivity and specificity. Patients with GTCS have an increased risk for injuries related to seizures and for sudden unexpected death in epilepsy (SUDEP), and many nocturnal seizures remain undetected in unattended patients. A portable automatic seizure detection device will be an important tool for helping these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.