Summary1. Understanding the factors that drive commonness and rarity of plant species and whether these factors differ for alien and native species are key questions in ecology. If a species is to become common in a community, incoming propagules must first be able to establish. The latter could be determined by competition with resident plants, the impacts of herbivores and soil biota, or a combination of these factors. 2. We aimed to tease apart the roles that these factors play in determining establishment success in grassland communities of 10 alien and 10 native plant species that are either common or rare in Germany, and from four families. In a two-year multisite field experiment, we assessed the establishment success of seeds and seedlings separately, under all factorial combinations of low vs. high disturbance (mowing vs mowing and tilling of the upper soil layer), suppression or not of pathogens (biocide application) and, for seedlings only, reduction or not of herbivores (net-cages). 3. Native species showed greater establishment success than alien species across all treatments, regardless of their commonness. Moreover, establishment success of all species was positively affected by disturbance. Aliens showed lower establishment success in undisturbed sites with biocide application. Release of the undisturbed resident community from pathogens by biocide application might explain this lower establishment success of aliens. These findings were consistent for establishment from either seeds or seedlings, although less significantly so for seedlings, suggesting a more important role of pathogens in very early stages of establishment after germination. Herbivore exclusion did play a limited role in seedling establishment success. 4. Synthesis: In conclusion, we found that less disturbed grassland communities exhibited strong biotic resistance to establishment success of species, whether alien or native. However, we also found evidence that alien species may benefit weakly from soilborne enemy release, but that this advantage over native species is lost when the latter are also released by biocide application. Thus, disturbance was the major driver for plant species establishment success and effects of pathogens on alien plant establishment may only play a minor role.
Fungicide resistance has become a challenging problem in management of Septoria tritici blotch (STB), caused by Zymoseptoria tritici, the most destructive disease of winter wheat throughout western and northern Europe. To ensure the continued effectiveness of those fungicides currently used, it is essential to monitor the development and spread of such resistance in field populations of the pathogen. Since resistance to the key families of fungicides used for STB control (demethyalation inhibitors or azoles, succinate dehydrogenase inhibitors or SDHIs and Quinone outside Inhibitors or QoIs) is conferred through target-site mutations, the potential exists to monitor resistance through the molecular detection of alterations in the target site genes. As more efficient fungicides were developed and applied, the pathogen has continuously adapted through accumulating multiple target-site alterations. In order to accurately monitor these changes in field populations, it is therefore becoming increasingly important to completely sequence the targeted genes. Here we report the development of a PacBio assay that facilitates the multiplex amplification and long-read sequencing of the target gene(s) for the azole (CYP51), SDHI (Sdh B, C, and D), and QoI (cytochrome b) fungicides. The assay was developed and optimised using three Irish Z. tritici collections established in spring 2017, which capture the range of fungicide resistance present in modern European populations of Z. tritici. The sequences obtained through the PacBio assay were validated using traditional Sanger sequencing and in vitro sensitivity screenings. To further exploit the long-read and high throughput potential of PacBio sequencing, an additional nine housekeeping genes (act, BTUB, cal, cyp, EF1, GAPDH, hsp80-1, PKC, TFC1) were sequenced and used to provide comprehensive Z. tritici strain genotyping.
Common ash (Fraxinus excelsior L.) is a tree species of significant ecological and economic importance that has suffered a devastating decline since the 1990s in Europe. Native ash species are being threatened by the alien invasive fungus Hymenoscyphus fraxineus, which causes ash dieback. The main goal of the study was to develop markers for traits related to tolerance to ash dieback and to investigate whether genotypes selected for tolerance were genetically different from susceptible wild populations. We phenotyped 326 ash trees from Sweden for disease severity and genotyped them using 63 amplicon-derived single-nucleotide polymorphism (SNP) markers derived from genes in 40 scaffolds spanning 8 MB in total, which represents approximately 1% of the ash genome. We used a mixed linear model to test for an association between genotypic variation at these loci and disease severity of ash. In total, two SNPs were found to have significant associations. One non-synonymous SNP associated with the disease severity of ash was found in a gene predicted to encode a subtilisin-related peptidase S8/S53 domain. A second marginally significant marker was associated with an LRR gene. Our results demonstrate an inexpensive time-effective method for generating genomic data that could have potential for use in future tree breeding programs and provide information for marker-assisted selection. Our study also showed a low differentiation between genotypes selected for disease tolerance and the wild population of ash representing a range of susceptibilities to ash dieback, indicating opportunities for further selection without significantly losing genetic diversity in the ash population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.