As antibodies to tumor necrosis factor (TNF) suppress immune responses in Crohn’s disease by binding to membrane-bound TNF (mTNF), we created a fluorescent antibody for molecular mTNF imaging in this disease. Topical antibody administration in 25 patients with Crohn’s disease led to detection of intestinal mTNF+ immune cells during confocal laser endomicroscopy. Patients with high numbers of mTNF+ cells showed significantly higher short-term response rates (92%) at week 12 upon subsequent anti-TNF therapy as compared to patients with low amounts of mTNF+ cells (15%). This clinical response in the former patients was sustained over a follow-up period of 1 year and was associated with mucosal healing observed in follow-up endoscopy. These data indicate that molecular imaging with fluorescent antibodies has the potential to predict therapeutic responses to biological treatment and can be used for personalized medicine in Crohn’s disease and autoimmune or inflammatory disorders.
Pathogenic somatic missense mutations within the DNA polymerase epsilon (POLE) exonuclease domain define the important subtype of ultramutated tumours (‘POLE‐ultramutated’) within the novel molecular classification of endometrial carcinoma (EC). However, clinical implementation of this classifier requires systematic evaluation of the pathogenicity of POLE mutations. To address this, we examined base changes, tumour mutational burden (TMB), DNA microsatellite instability (MSI) status, POLE variant frequency, and the results from six in silico tools on 82 ECs with whole‐exome sequencing from The Cancer Genome Atlas (TCGA). Of these, 41 had one of five known pathogenic POLE exonuclease domain mutations (EDM) and showed characteristic genomic alterations: C>A substitution > 20%, T>G substitutions > 4%, C>G substitutions < 0.6%, indels < 5%, TMB > 100 mut/Mb. A scoring system to assess these alterations (POLE‐score) was developed; based on their scores, 7/18 (39%) additional tumours with EDM were classified as POLE‐ultramutated ECs, and the six POLE mutations present in these tumours were considered pathogenic. Only 1/23 (4%) tumours with non‐EDM showed these genomic alterations, indicating that a large majority of mutations outside the exonuclease domain are not pathogenic. The infrequent combination of MSI‐H with POLE EDM led us to investigate the clinical significance of this association. Tumours with pathogenic POLE EDM co‐existent with MSI‐H showed genomic alterations characteristic of POLE‐ultramutated ECs. In a pooled analysis of 3361 ECs, 13 ECs with DNA mismatch repair deficiency (MMRd)/MSI‐H and a pathogenic POLE EDM had a 5‐year recurrence‐free survival (RFS) of 92.3%, comparable to previously reported POLE‐ultramutated ECs. Additionally, 14 cases with non‐pathogenic POLE EDM and MMRd/MSI‐H had a 5‐year RFS of 76.2%, similar to MMRd/MSI‐H, POLE wild‐type ECs, suggesting that these should be categorised as MMRd, rather than POLE‐ultramutated ECs for prognostication. This work provides guidance on classification of ECs with POLE mutations, facilitating implementation of POLE testing in routine clinical care. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Endometrial carcinoma (EC) molecular classification based on four molecular subclasses identified in The Cancer Genome Atlas (TCGA) has gained relevance in recent years due to its prognostic utility and potential to predict benefit from adjuvant treatment. While most ECs can be classified based on a single classifier (POLE exonuclease domain mutations – POLEmut, MMR deficiency – MMRd, p53 abnormal – p53abn), a small but clinically relevant group of tumours harbour more than one molecular classifying feature and are referred to as ‘multiple‐classifier’ ECs. We aimed to describe the clinicopathological and molecular features of multiple‐classifier ECs with abnormal p53 (p53abn). Within a cohort of 3518 molecularly profiled ECs, 107 (3%) tumours displayed p53abn in addition to another classifier(s), including 64 with MMRd (MMRd–p53abn), 31 with POLEmut (POLEmut–p53abn), and 12 with all three aberrations (MMRd–POLEmut–p53abn). MMRd–p53abn ECs and POLEmut–p53abn ECs were mostly grade 3 endometrioid ECs, early stage, and frequently showed morphological features characteristic of MMRd or POLEmut ECs. 18/28 (60%) MMRd–p53abn ECs and 7/15 (46.7%) POLEmut–p53abn ECs showed subclonal p53 overexpression, suggesting that TP53 mutation was a secondary event acquired during tumour progression. Hierarchical clustering of TCGA ECs by single nucleotide variant (SNV) type and somatic copy number alterations (SCNAs) revealed that MMRd–p53abn tumours mostly clustered with single‐classifier MMRd tumours (20/23) rather than single‐classifier p53abn tumours (3/23), while POLEmut–p53abn tumours mostly clustered with single‐classifier POLEmut tumours (12/13) and seldom with single‐classifier p53abn tumours (1/13) (both p ≤ 0.001, chi‐squared test). Finally, the clinical outcome of patients with MMRd–p53abn and POLEmut–p53abn ECs [stage I 5‐year recurrence‐free survival (RFS) of 92.2% and 94.1%, respectively] was significantly different from single‐classifier p53abn EC (stage I RFS 70.8%, p = 0.024 and p = 0.050, respectively). Our results support the classification of MMRd–p53abn EC as MMRd and POLEmut–p53abn EC as POLEmut. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
The emergence of novel immunomodulatory cancer therapies over the last decade, above all immune checkpoint blockade, has significantly advanced tumor treatment. For colorectal cancer (CRC), a novel scoring system based on the immune cell infiltration in tumors has greatly improved disease prognostic evaluation and guidance to more specific therapy. These findings underline the relevance of tumor immunology in the future handling and therapeutic approach of malignant disease. Inflammation can either promote or suppress CRC pathogenesis and inflammatory mediators, mainly cytokines, critically determine the pro- or anti-tumorigenic signals within the tumor environment. Here, we review the current knowledge on the cytokines known to be critically involved in CRC development and illustrate their mechanisms of action. We also highlight similarities and differences between CRC patients and murine models of CRC and point out cytokines with an ambivalent role for intestinal cancer. We also identify some of the future challenges in the field that should be addressed for the development of more effective immunomodulatory therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.