During development, activation of Cl(-)-permeable GABA(A) receptors (GABA(A)-R) excites neurons as a result of elevated intracellular Cl(-) levels and a depolarized Cl(-) equilibrium potential (E(Cl)). GABA becomes inhibitory as net outward neuronal transport of Cl(-) develops in a caudal-rostral progression. In line with this caudal-rostral developmental pattern, GABAergic anticonvulsant compounds inhibit motor manifestations of neonatal seizures but not cortical seizure activity. The Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) facilitates the accumulation of Cl(-) in neurons. The NKCC1 blocker bumetanide shifted E(Cl) negative in immature neurons, suppressed epileptiform activity in hippocampal slices in vitro and attenuated electrographic seizures in neonatal rats in vivo. Bumetanide had no effect in the presence of the GABA(A)-R antagonist bicuculline, nor in brain slices from NKCC1-knockout mice. NKCC1 expression level versus expression of the Cl(-)-extruding transporter (KCC2) in human and rat cortex showed that Cl(-) transport in perinatal human cortex is as immature as in the rat. Our results provide evidence that NKCC1 facilitates seizures in the developing brain and indicate that bumetanide should be useful in the treatment of neonatal seizures.
Activity-dependent alteration in synaptic strength is a fundamental property of the vertebrate central nervous system and is thought to underlie learning and memory. The most extensively studied model of activity-dependent synaptic plasticity is long-term potentiation (LTP) of glutamate-responsive (glutamatergic) synapses, a widespread phenomenon involving multiple mechanisms. The best characterized form of LTP occurs in the CA1 region of the hippocampus, in which LTP is initiated by transient activation of NMDA (N-methyl-D-aspartate) receptors and is expressed as a persistent increase in synaptic transmission through AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) receptors. This increase is due, at least in part, to a postsynaptic modification of AMPA-receptor function; this modification could be caused by an increase in the number of receptors, their open probability, their kinetics or their single-channel conductance. Here we show that the induction of LTP in the CA1 region of the hippocampus is often associated with an increase in single-channel conductance of AMPA receptors. This shows that elementary channel properties can be rapidly modified by synaptic activity and provides an insight into one molecular mechanism by which glutamatergic synapses can alter their strength.
has participated as a clinical investigator for Zogenix, GW Pharma, Marinius Pharmaceuticals and Vitaflo. She has been a member of advisory boards and speaker for Eisai, GW Pharma, Nutricia and Zogenix. All remuneration has been made to her department.
We investigated whether the interaction between the N-ethyl-maleimide-sensitive fusion protein (NSF) and the AMPA receptor (AMPAR) subunit GluR2 is involved in synaptic plasticity in the CA1 region of the hippocampus. Blockade of the NSF-GluR2 interaction by a specific peptide (pep2m) introduced into neurons prevented homosynaptic, de novo long-term depression (LTD). Moreover, saturation of LTD prevented the pep2m-induced reduction in AMPAR-mediated excitatory postsynaptic currents (EPSCs). Minimal stimulation experiments indicated that both pep2m action and LTD were due to changes in quantal size and quantal content but were not associated with changes in AMPAR single-channel conductance or EPSC kinetics. These results suggest that there is a pool of AMPARs dependent on the NSF-GluR2 interaction and that LTD expression involves the removal of these receptors from synapses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.