RNA editing is a post-transcriptional process that modifies RNA molecules leading to transcript sequences that differ from their template DNA. A-to-I editing was found to be widely distributed in nuclear transcripts of metazoa, but was detected in fungi only recently in a study of the filamentous ascomycete Fusarium graminearum that revealed extensive A-to-I editing of mRNAs in sexual structures (fruiting bodies). Here, we searched for putative RNA editing events in RNA-seq data from Sordaria macrospora and Pyronema confluens, two distantly related filamentous ascomycetes, and in data from the Taphrinomycete Schizosaccharomyces pombe. Like F. graminearum, S. macrospora is a member of the Sordariomycetes, whereas P. confluens belongs to the early-diverging group of Pezizomycetes. We found extensive A-to-I editing in RNA-seq data from sexual mycelium from both filamentous ascomycetes, but not in vegetative structures. A-to-I editing was not detected in different stages of meiosis of S. pombe. A comparison of A-to-I editing in S. macrospora with F. graminearum and P. confluens, respectively, revealed little conservation of individual editing sites. An analysis of RNA-seq data from two sterile developmental mutants of S. macrospora showed that A-to-I editing is strongly reduced in these strains. Sequencing of cDNA fragments containing more than one editing site from P. confluens showed that at the beginning of sexual development, transcripts were incompletely edited or unedited, whereas in later stages transcripts were more extensively edited. Taken together, these data suggest that A-to-I RNA editing is an evolutionary conserved feature during fruiting body development in filamentous ascomycetes.
Penicillium chrysogenum is the major industrial producer of the β-lactam antibiotic penicillin. Here, we report the complete genome sequence of the industrial progenitor strain P. chrysogenum P2niaD18 in a chromosome-scale genome assembly. P2niaD18 is distinguished from the recently sequenced P. chrysogenum Wisconsin 54-1255 strain by major chromosomal rearrangements leading to a modified chromosomal architecture.
BackgroundCephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-term strain development programs to reach economically relevant antibiotic titers. It is so far unknown, whether equivalent changes in gene expression lead to elevated antibiotic titers in production strains.ResultsUsing the sequence of PcbC, a key enzyme of β-lactam antibiotic biosynthesis, from eighteen different pro- and eukaryotic microorganisms, we have constructed a phylogenetic tree to demonstrate the distant relationship of both fungal producers. To address the question whether both fungi have undergone similar genetic adaptions, we have performed a comparative gene expression analysis of wild-type and production strains. We found that strain improvement is associated with the remodeling of the transcriptional landscape in both fungi. In P. chrysogenum, 748 genes showed differential expression, while 1572 genes from A. chrysogenum are differentially expressed in the industrial strain. Common in both fungi is the upregulation of genes belonging to primary and secondary metabolism, notably those involved in precursor supply for β-lactam production. Other genes not essential for β-lactam production are downregulated with a preference for those responsible for transport processes or biosynthesis of other secondary metabolites. Transcriptional regulation was shown to be an important parameter during strain improvement in different organisms. We therefore investigated deletion strains of the major transcriptional regulator velvet from both production strains.We identified 567 P. chrysogenum and 412 A. chrysogenum Velvet target genes. In both deletion strains, approximately 50% of all secondary metabolite cluster genes are differentially regulated, including β-lactam biosynthesis genes. Most importantly, 35-57% of Velvet target genes are among those that showed differential expression in both improved industrial strains.ConclusionsThe major finding of our comparative transcriptome analysis is that strain improvement programs in two unrelated fungal β-lactam antibiotic producers alter the expression of target genes of Velvet, a global regulator of secondary metabolism. From these results, we conclude that regulatory alterations are crucial contributing factors for improved β-lactam antibiotic titers during strain improvement in both fungi.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3663-0) contains supplementary material, which is available to authorized users.
In heterothallic ascomycetes, mating is controlled by two nonallelic idiomorphs that determine the ‘sex’ of the corresponding strains. We recently discovered mating-type loci and a sexual life cycle in the penicillin-producing fungus, Penicillium chrysogenum. All industrial penicillin production strains worldwide are derived from a MAT1-1 isolate. No MAT1-2 strain has been investigated in detail until now. Here, we provide the first functional analysis of a MAT1-2 locus from a wild-type strain. Similar to MAT1-1, the MAT1-2 locus has functions beyond sexual development. Unlike MAT1-1, the MAT1-2 locus affects germination and surface properties of conidiospores and controls light-dependent asexual sporulation. Mating of the MAT1-2 wild type with a MAT1-1 high penicillin producer generated sexual spores. We determined the genomic sequences of parental and progeny strains using next-generation sequencing and found evidence for genome-wide recombination. SNP calling showed that derived industrial strains had an uneven distribution of point mutations compared with the wild type. We found evidence for meiotic recombination in all chromosomes. Our results point to a strategy combining the use of mating-type genes, genetics, and next-generation sequencing to optimize conventional strain improvement methods.
MicroRNAs (miRNAs) are non-coding small RNAs (sRNAs) that regulate gene expression in a wide range of eukaryotes. In this study, we analyzed regulatory sRNAs in Penicillium chrysogenum, the industrial producer of the β-lactam antibiotic penicillin. To identify sRNAs and microRNA-like RNAs (milRNAs) on a global approach, two sRNA sequencing libraries were constructed. One library was created with pooled total RNA, obtained from twelve differently grown cultures (RNA Mix), and the other with total RNA from a single submerged cultivation (∆ku70FRT2). Illumina sequencing of both RNA libraries produced 84,322,825 mapped reads. To distinguish between Dicer-dependent and independent sRNA formation, we further constructed two single dicer gene mutants (∆dcl2 and ∆dcl1) and a dicer double mutant (∆dcl2∆dcl1) and analyzed an sRNA library from the Dicer-deficient double-mutant. We identified 661 Dicer-dependent loci and in silico prediction revealed 34 milRNAs. Northern blot hybridization of two milRNAs provided evidence for mature milRNAs that are processed either in a complete or partial Dicer-dependent manner from an RNA precursor. Identified milRNAs share typical characteristics of previously discovered fungal milRNAs, like a strong preference for a 5' uracil and the typical length distribution. The detection of potential milRNA target sites in the genome suggests that milRNAs might play a role in posttranscriptional gene regulation. Our data will further increase our knowledge of sRNA dependent gene regulation processes, which is an important prerequisite to develop more effective strategies for improving industrial fermentations with P. chrysogenum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.