Retarding field analyzers (RFAs) are important diagnostics to measure fluxes and energies of ions impinging onto the wall of a plasma reactor. Any quantitative use of the data requires a proper calibration, which is here performed for a miniaturized RFA. The calibration accounts for the transparencies of the RFA grids as well as for collisions inside the RFA. An analytical model is derived which covers both geometrical and collisional effects. The model is calibrated and experimentally verified using a Langmuir probe. We find that the transparency of an RFA is a random variable which depends on the individual alignment of the RFA grids. Collisions inside the RFA limit the ion current transfer through the RFA at higher pressures. A simple method is presented which allows one to remove these artefacts from the RFA data and to obtain quantitative ion velocity distributions.
Ion bombardment of the substrate is a significant parameter in plasma processing such as dry etching or thin film deposition. The ion bombardment is described by ion velocity distribution functions (IVDFs), which were here measured quantitatively at a sinusoidally and non-sinusoidally biased electrode. The electrode voltage was monitored and controlled in the frequency domain using fast Fourier transformation. IVDF measurements were performed by a floating retarding field analyzer. A full modulation of the IVDF by arbitrary bias waveforms is only achieved if sufficiently high sheath voltages are used. If the applied sheath voltages become too low, the IVDFs are only partly determined by the RF bias waveforms and the system response becomes nonlinear. An analytical sheath model is derived from the experimental data, which accounts for arbitrary bias waveforms as well as for collisional and nonlinear effects in the sheath. It is shown that a combined DC and RF biasing of the electrode is required to gain full control over the ion bombardment of the substrate.
Fluorocarbon thin films with adjustable surface roughness are deposited in a capacitively coupled octafluorocyclobutane (c‐C4F8) plasma at a pressure of 40 Pa and 100 Pa. The surface morphology is studied using non‐contact atomic force microscopy (AFM). The film properties are analyzed using spectroscopic ellipsometry (SE) and Fourier transform infrared spectroscopy (FTIR). The interface roughness w of the 100 Pa deposition rapidly increases with deposition time t according to a power law $w \sim t^\beta$ with a dynamic scaling exponent β of 1.35 ± 0.08. This large β‐value indicates anomalous roughness scaling. Different growth models are discussed which might explain the rapid roughness evolution that is observed during high pressure deposition.
Fluorocarbon thin-film deposition is studied, which shows an anomalous high dynamic growth exponent and therefore does not fit in any universal class of fractal surface growth models. A detailed analysis of the nonlinear behavior of the surface morphology evolution is carried out, quantifying several features of the shadowing instability. A synergy effect with the Kardar-Parisi-Zhang nonlinearity, which couple the large scales induced by shadowing with intermediate scales, may explain the anomalous high growth exponent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.