Pluripotent stem cells exist in naive and primed states, epitomized by mouse embryonic stem cells (ESCs) and the developmentally more advanced epiblast stem cells (EpiSCs; ref. 1). In the naive state of ESCs, the genome has an unusual open conformation and possesses a minimum of repressive epigenetic marks2. In contrast, EpiSCs have activated the epigenetic machinery that supports differentiation towards the embryonic cell types3–6. The transition from naive to primed pluripotency therefore represents a pivotal event in cellular differentiation. But the signals that control this fundamental differentiation step remain unclear. We show here that paracrine and autocrine Wnt signals are essential self-renewal factors for ESCs, and are required to inhibit their differentiation into EpiSCs. Moreover, we find that Wnt proteins in combination with the cytokine LIF are sufficient to support ESC self-renewal in the absence of any undefined factors, and support the derivation of new ESC lines, including ones from non-permissive mouse strains. Our results not only demonstrate that Wnt signals regulate the naive-to-primed pluripotency transition, but also identify Wnt as an essential and limiting ESC self-renewal factor.
Alternative splicing shapes mammalian transcriptomes, with many RNA molecules undergoing multiple distant alternative splicing events. Comprehensive transcriptome analysis, including analysis of exon co-association in the same molecule, requires deep, long-read sequencing. Here we introduce an RNA sequencing method, synthetic long-read RNA sequencing (SLR-RNA-seq), in which small pools (≤1,000 molecules/pool, ≤1 molecule/gene for most genes) of full-length cDNAs are amplified, fragmented and short-read-sequenced. We demonstrate that these RNA sequences reconstructed from the short reads from each of the pools are mostly close to full length and contain few insertion and deletion errors. We report many previously undescribed isoforms (human brain: ∼13,800 affected genes, 14.5% of molecules; mouse brain ∼8,600 genes, 18% of molecules) and up to 165 human distant molecularly associated exon pairs (dMAPs) and distant molecularly and mutually exclusive pairs (dMEPs). Of 16 associated pairs detected in the mouse brain, 9 are conserved in human. Our results indicate conserved mechanisms that can produce distant but phased features on transcript and proteome isoforms.
Rapid growth of sequencing technologies has greatly contributed to increasing our understanding of human genetics. Yet, in spite of this growth, mainstream technologies have been largely unsuccessful in resolving the diploid nature of the human genome. Here we describe statistically aided long read haplotyping (SLRH), a rapid, accurate method based on a simple experimental protocol that requires potentially as little as 30 Gbp of sequencing in addition to a standard (50x coverage) whole-genome analysis for human samples. Using this technology, we phase 99% of single-nucleotide variants in three human genomes into long haplotype blocks of 200 kbp to 1 Mbp in length. As a demonstration of the potential applications of our method, we determine allele-specific methylation patterns in a human genome and identify hundreds of differentially methylated regions that were previously unknown. Such information may offer insight into the mechanisms behind differential gene expression.
The highly conserved Wingless/Wnt signaling pathway controls many developmental processes by regulating the expression of target genes, most often through members of the TCF family of DNA-binding proteins. In the absence of signaling, many of these targets are silenced, by mechanisms involving TCFs that are not fully understood. Here we report that the chromatin remodeling proteins ISWI and ACF1 are required for basal repression of Wg target genes in Drosophila. This regulation is not due to global repression by ISWI and ACF1 and is distinct from their previously reported role in chromatin assembly. While ISWI is localized to the same regions of Wingless target gene chromatin as TCF, we find that ACF1 binds much more broadly to target loci. This broad distribution of ACF1 is dependent on ISWI. ISWI and ACF1 are required for TCF binding to chromatin, while a TCF-independent role of ISWI-ACF1 in repression of Wingless targets is also observed. Finally, we show that Wingless signaling reduces ACF1 binding to Wg targets, and ISWI and ACF1 regulate repression by antagonizing histone H4 acetylation. Our results argue that Wg signaling activates target gene expression partly by overcoming the chromatin barrier maintained by ISWI and ACF1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.