The task of planetary exploration poses many challenges for a robot system, from weight and size constraints to sensors and actuators suitable for extraterrestrial environment conditions. As there is a significant communication delay to other planets, the efficient operation of a robot system requires a high level of autonomy. In this work, we present the Light Weight Rover Unit (LRU), a small and agile rover prototype that we designed for the challenges of planetary exploration. Its locomotion system with individually steered wheels allows for high maneuverability in rough terrain and the application of stereo cameras as its main sensor ensures the applicability to space missions. We implemented software components for self-localization in GPS-denied environments, environment mapping, object search and localization and for the autonomous pickup and assembly of objects with its arm. Additional high-level mission control components facilitate both autonomous behavior and remote monitoring of the system state over a delayed communication link. We successfully demonstrated the autonomous capabilities of our LRU at the SpaceBotCamp challenge, a national robotics contest with focus on autonomous planetary exploration. A robot had to autonomously explore a moon-like rough-terrain environment, locate and collect two objects and assemble them after transport to a third object-which the LRU did on its first try, in half of the time and fully autonomous.
Abstract-In the context of 3-D scene modeling, this work aims at the accurate estimation of the pose of a close-range 3-D modeling device, in real-time and passively from its own images. This novel development makes it possible to abandon using inconvenient, expensive external positioning systems. The approach comprises an ego-motion algorithm tracking natural, distinctive features, concurrently with customary 3-D modeling of the scene. The use of stereo vision, an inertial measurement unit, and robust cost functions for pose estimation further increases performance. Demonstrations and abundant video material validate the approach.
Recently, robots have gained capabilities in both sensing and actuation, which enable operation in the proximity of humans. Even direct physical interaction has become possible without suffering the decrease in speed and payload. The DLR Lightweight Robot III (LWR-III), whose technology is currently being transferred to the robot manufacturer KUKA Roboter GmbH, is such a device capable of realizing various features crucial for direct interaction with humans. Impedance control and collision detection with adequate reaction are key components for enabling "soft and safe" robotics. The implementation of a sensor based robotic co-worker that brings robots closer to humans in industrial settings and achieve close cooperation is an important goal in robotics. Despite being a common vision in robotics it has not become reality yet, as there are various open questions still to be answered. In this paper a solid concept and a prototype realization of a co-worker scenario are developed in order to demonstrate that state-of-the-art technology is now mature enough to reach this aspiring aim. We support our ideas by addressing the industrially relevant bin-picking problem with the LWR-III, which is equipped with a Time-of-Flight camera for object recognition and the DLR 3D-Modeller for generating accurate environment models. The paper describes the sophisticated control schemes of the robot in combination with robust computer vision algorithms, which lead to a reliable solution for the chosen problem. Strategies are devised for safe interaction with the human during task execution, state depending robot behavior, and the appropriate mechanisms, to realize robustness in partially unstructured environments.
This work presents a concept for autonomous mobile manipulation in industrial environments. Utilizing autonomy enables an unskilled human worker to easily configure a complex robotics system in a setup phase before carrying out fetch and carry operations in the execution phase. In order to perform the given tasks in real industrial production sites, we propose a robotic system consisting of a mobile platform, a torque-controlled manipulator, and an additional sensor head. Multiple sensors are attached which allow for perception of the environment and the objects to be manipulated. This is essential for coping with uncertainties in real-world application. In order to provide an easy-to-use and flexible system, we present a modular software concept which is handled and organized by a hierarchical flow control depending on the given task and environmental requirements. The presented concept for autonomous mobile manipulation is implemented exemplary for industrial manipulation tasks and proven by real-world application in a water pump production site. Furthermore, the concept has also been applied to other robotic systems and other domains for planetary exploration with a rover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.