We present a novel acceleration method for the solution of parametric ODEs by single-step implicit solvers by means of greedy kernelbased surrogate models. In an offline phase, a set of trajectories is precomputed with a high-accuracy ODE solver for a selected set of parameter samples, and used to train a kernel model which predicts the next point in the trajectory as a function of the last one. This model is cheap to evaluate, and it is used in an online phase for new parameter samples to provide a good initialization point for the nonlinear solver of the implicit integrator. The accuracy of the surrogate reflects into a reduction of the number of iterations until convergence of the solver, thus providing an overall speedup of the full simulation. Interestingly, in addition to providing an acceleration, the accuracy of the solution is maintained, since the ODE solver is still used to guarantee the required precision. Although the method can be applied to a large variety of solvers and different ODEs, we will present in details its use with the Implicit Euler method for the solution of the Burgers equation, which results to be a meaningful test case to demonstrate the method's features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.