Abstract. Climate and environmental data were used to estimate the risk of testing positive for antibodies to bluetongue (BTV) and epizootic hemorrhagic disease viruses (EHDV) in cattle in Illinois and western Indiana over three transmission seasons (2000)(2001)(2002). The risks of BTV and EHDV seropositivity were positively associated with temperature during every year of the study. The EHDV seropositivity was also positively associated with forest patchiness in two of the years. During 2002, a year with unusually high spring rainfall, forest patchiness was not significantly associated with EHDV but spring rainfall did have a moderating effect on temperature. Maps of predicted probability of exposure to BTV or EHDV were created using these best-fitting models and show distinctly different spatial patterns within the same cattle population.
Overall seroprevalence was lower than has been reported for Illinois cattle. Bluetongue virus antibodies were distributed heterogeneously in this region. Only in the southernmost zone was seroprevalence consistently > 2%. Regionalization of BTV risk based on state borders does not account for such variability. Serologic data could be combined with landscape, climate, and vector data to develop predictive models of BTV risk within transitional regions of the United States.
There is concern that a relationship exists between antibiotic use in livestock production and the emergence, spread, and persistence of antibiotic resistance. It is important to understand the impact that therapeutic doses of antibiotics for treatment of disease have on resistance because disease treatment typically involves higher doses of antibiotic over short time spans. Absolute quantities of the antibiotic resistance gene bla(CMY-2) were measured by real-time quantitative polymerase chain reaction (qPCR) in the bacterial community DNA of fecal samples from dairy cattle that were given a 5-day course of ceftiofur and untreated cattle during a longitudinal, observational study. A hierarchical linear model that accounts for left-censored data and repeated measures was used to estimate group means of bla(CMY-2) from the qPCR data. Ceftiofur-treated animals had significantly higher mean quantities of bla(CMY-2) than untreated animals during treatment. On the first day post-treatment, mean quantities of bla(CMY-2) returned to pre-treatment levels and remained low in both groups for the remainder of the study. The use of qPCR to measure bla(CMY-2) quantities provided evidence that the burden of resistance in treated animals may have increased temporarily, a result that was not evident when using only cultivation-based methods of testing for resistance.
Analysis of gene quantities measured by quantitative real-time PCR (qPCR) can be complicated by observations that are below the limit of quantification (LOQ) of the assay. A hierarchical model estimated using MCMC methods was developed to analyze qPCR data of genes with observations that fall below the LOQ (censored observations). Simulated datasets with moderate to very high levels of censoring were used to assess the performance of the model; model results were compared to approaches that replace censored observations with a value on the log scale approximating zero or with values ranging from one to the LOQ of ten gene copies. The model was also compared to a Tobit regression model. Finally, all approaches for handling censored observations were evaluated with DNA extracted from samples that were spiked with known quantities of the antibiotic resistance gene tetL. For the simulated datasets, the model outperformed substitution of all values from 1–10 under all censoring scenarios in terms of bias, mean square error, and coverage of 95% confidence intervals for regression parameters. The model performed as well or better than substitution of a value approximating zero under two censoring scenarios (approximately 57% and 79% censored values). The model also performed as well or better than Tobit regression in two of three censoring scenarios (approximately 79% and 93% censored values). Under the levels of censoring present in the three scenarios of this study, substitution of any values greater than 0 produced the least accurate results. When applied to data produced from spiked samples, the model produced the lowest mean square error of the three approaches. This model provides a good alternative for analyzing large amounts of left-censored qPCR data when the goal is estimation of population parameters. The flexibility of this approach can accommodate complex study designs such as longitudinal studies.
Seroprevalence of antibodies against EHDV in cattle was higher in the south than north; however, local complexities existed that were not observed in a serosurvey of antibodies against bluetongue virus from the same cattle population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.