Summary 1.The development of models of the relationship between biodiversity and ecosystem function (BEF) has advanced rapidly over the last 20 years, incorporating insights gained through extensive experimental work. We propose Generalised Diversity-Interactions models that include many of the features of existing models and have several novel features. Generalised Diversity-Interactions models characterise the contribution of two species to ecosystem function as being proportional to the product of their relative abundances raised to the power of a coefficient h. 2. A value of h < 1 corresponds to a stronger than expected contribution of species' pairs to ecosystem functioning, particularly at low relative abundance of species. 3. Varying the value of h has profound consequences for community-level properties of BEF relationships, including: (i) saturation properties of the BEF relationship; (ii) the stability of ecosystem function across communities; (iii) the likelihood of transgressive overyielding. 4. For low values of h, loss of species can have a much greater impact on ecosystem functioning than loss of community evenness. 5. Generalised Diversity-Interactions models serve to unify the modelling of BEF relationships as they include several other current models as special cases. 6. Generalised Diversity-Interactions models were applied to seven data sets and three functions: total biomass (five grassland experiments), community respiration (one bacterial experiment) and nitrate leaching (one earthworm experiment). They described all the nonrandom structure in the data in six experiments, and most of it in the seventh experiment and so fit as well or better than competing BEF models for these data. They were significantly better than Diversity-Interactions models in five experiments. 7. Synthesis. We show that Generalized Diversity-Interactions models quantitatively integrate several methods that separately address effects of species richness, evenness and composition on ecosystem function. They describe empirical data at least as well as alternative models and improve the ability to quantitatively test among several theoretical and practical hypotheses about the effects of Journal of Ecology 2013Ecology , 101, 344-355 doi: 10.1111Ecology /1365Ecology -2745 biodiversity levels on ecosystem function. They improve our understanding of important aspects of the relationship between biodiversity (evenness and richness) and ecosystem function (BEF), which include saturation, effects of species loss, the stability of ecosystem function and the incidence of transgressive overyielding.
Kirwan, L., Connolly, J., Brophy, C., Baadshaug, O. H., B?langer, G., Black, A., Carnus, T., Collins, R. P., ?op, J., Delgado, I., De Vliegher, A., Elgersma, A., Frankow-Lindberg, B. E., Golinski, P., Grieu, P., Gustavsson, A., Helgad?ttir, ?., H?glind, M., Huguenin-elie, O., J?rgensen, M., Kadziuliene, Z., Lunnan, T., L?scher, A., Kurki, P., Porqueddu, C., Sebastia, M. T., Thumm, U., Walmsley, D. & Finn, J. A. (2014). The Agrodiversity Experiment: three years of data from a multisite study in intensively managed grasslands. Ecology, 95 (9), [2680]Intensively managed grasslands are globally prominent ecosystems. Weinvestigated whether experimental increases in plant diversity in intensively managedgrassland communities can increase their resource use efficiency.This work consisted of a coordinated, continental-scale 33-site experiment. The core designwas 30 plots, representing 15 grassland communities at two seeding densities. The 15communities comprised four monocultures (two grasses and two legumes) and 11 four-speciesmixtures that varied in the relative abundance of the four species at sowing. There were 1028plots in the core experiment, with another 572 plots sown for additional treatments. Sitesfollowed a protocol and employed the same experimental methods with certain plotmanagement factors, such as seeding rates and number of cuts, determined by local practice.The four species used at a site depended on geographical location, but the species were chosenaccording to four functional traits: a fast-establishing grass, a slow-establishing persistentgrass, a fast-establishing legume, and a slow-establishing persistent legume. As the objectivewas to maximize yield for intensive grassland production, the species chosen were all highyieldingagronomic species.The data set contains species-specific biomass measurements (yield per species and of weeds)for all harvests for up to four years at 33 sites. Samples of harvested vegetation were alsoanalyzed for forage quality at 26 sites.These data should be of interest to ecologists studying relationships between diversity andecosystem function and to agronomists interested in sustainable intensification. The largespatial scale of the sites provides opportunity for analyses across spatial (and temporal) scales.The database can also complement existing databases and meta-analyses on biodiversity?ecosystem function relationships in natural communities by focusing on those samerelationships within intensively managed agricultural grasslands.publishersversionPeer reviewe
The recent growth in bioenergy crop cultivation, stimulated by the need to implement measures to reduce net CO 2 emissions, is driving major land-use changes with consequences for biodiversity and ecosystem service provision. Although the type of bioenergy crop and its associated management is likely to affect biodiversity at the local (field) scale, landscape context and its interaction with crop type may also influence biodiversity on farms. In this study, we assessed the impact of replacing conventional agricultural crops with two model bioenergy crops (either oilseed rape Brassica napus or Miscanthus 9 giganteus) on vascular plant, bumblebee, solitary bee, hoverfly and carabid beetle richness, diversity and abundance in 50 sites in Ireland. We assessed whether within-field biodiversity was also related to surrounding landscape structure. We found that local-and landscape-scale variables correlated with biodiversity in these agricultural landscapes. Overall, the differences between the bioenergy crops and the conventional crops on farmland biodiversity were mostly positive (e.g. higher vascular plant richness in Miscanthus planted on former conventional tillage, higher solitary bee abundance and richness in Miscanthus and oilseed rape compared with conventional crops) or neutral (e.g. no differences between crop types for hoverflies and bumblebees). We showed that these crop type effects were independent of (i.e. no interactions with) the surrounding landscape composition and configuration. However, surrounding landscape context did relate to biodiversity in these farms, negatively for carabid beetles and positively for hoverflies. Although we conclude that the bioenergy crops compared favourably with conventional crops in terms of biodiversity of the taxa studied at the field scale, the effects of large-scale planting in these landscapes could result in very different impacts. Maintaining ecosystem functioning and the delivery of ecosystem services will require a greater understanding of impacts at the landscape scale to ensure the sustainable development of climate change mitigation measures.
The role of biodiversity in regulating the stability of ecosystem functioning has importance for the reliable delivery of ecosystem services. To date, ecological studies that aim to measure stability in ecosystem function across a range in diversity have almost universally used the coefficient of variation (CV, the ratio of standard deviation (SD) of functional response to its mean), or its inverse 1/CV, in reaching conclusions. We argue that the use of CV for this purpose can lead to misleading conclusions on stability. We consider that defining the stability of ecosystem functioning solely in terms of the CV confines the term stability to a usage and context that is not natural or intuitive to many who wish to address questions about the reliability with which ecosystems deliver services. We use illustrative scenarios to show that an assessment of stability based on the CV is not as effective in many cases as one based on joint consideration of mean and standard deviation, and may be completely misleading, especially where low values of functional response are a desirable outcome. Faced with similar questions, agronomic studies that aim to assess the stability of ecosystem function (comparison of yield of different varieties within and across different sites) take both the average response and variability within-and between-sites into consideration. We argue that the way stability is measured should be appropriate for the questions about the delivery of ecosystem services that are being addressed. We suggest approaches based on the joint modelling of the mean and standard deviation as a basis for addressing questions of biodiversity and stability of ecosystem function. Assessment of the importance of diversity in providing ecosystem services for society is more likely to be made on socioeconomic evaluation of trade-offs between mean and variability of the function rather than its stability as measured by the coefficient of variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.